The Parabola 3.6 Chapter 3 Conics 3.6.1

Slides:



Advertisements
Similar presentations
Parabola Conic section.
Advertisements

Chapter 10 Quadratic Relations.
6.6 Analyzing Graphs of Quadratic Functions
Objectives Identify and transform conic functions.
The Ellipse 10.3 Chapter 10 Analytic Geometry 3.4.1
Parabolas Warm Up Lesson Presentation Lesson Quiz
Quadratic Graphs and Completing the Square
Today in Precalculus Notes: Conic Sections - Parabolas Homework
Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix, and axis of symmetry.
Parabola.
9.1 Parabolas.
Math 143 Section 7.3 Parabolas. A parabola is a set of points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
8.2 Graph and Write Equations of Parabolas
EXAMPLE 1 Graph an equation of a parabola SOLUTION STEP 1 Rewrite the equation in standard form x = – Write original equation Graph x = – y.
Parabolas Date: ____________.
Chapter Parabolas. Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix,
Section 9.1 Conics.
Graph an equation of a parabola
Parabolas Section The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Parabolas.
Sullivan Algebra and Trigonometry: Section 10.2 The Parabola
Section 7.1 – Conics Conics – curves that are created by the intersection of a plane and a right circular cone.
Table of Contents Parabola - Definition and Equations Consider a fixed point F in the plane which we shall call the focus, and a line which we will call.
Copyright © Cengage Learning. All rights reserved. Conic Sections.
MATHPOWER TM 12, WESTERN EDITION Chapter 3 Conics.
ALGEBRA 2 Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = –1. You need.
10.2 Parabolas JMerrill, Review—What are Conics Conics are formed by the intersection of a plane and a double-napped cone. There are 4 basic conic.
10-5 Parabolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
10.2 Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation.
6 minutes Warm-Up For each parabola, find an equation for the axis of symmetry and the coordinates of the vertex. State whether the parabola opens up.
10.2 The Parabola. A parabola is defined as the locus of all points in a given plane that are the same distance from a fixed point, called the focus,
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
2.1 – Quadratic Functions.
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
Copyright © 2011 Pearson Education, Inc. The Parabola Section 7.1 The Conic Sections.
Section 11.1 Section 11.2 Conic Sections The Parabola.
Section 9.3 The Parabola. Finally, something familiar! The parabola is oft discussed in MTH 112, as it is the graph of a quadratic function: Does look.
Advanced Geometry Conic Sections Lesson 3
Parabola  The set of all points that are equidistant from a given point (focus) and a given line (directrix).
The Parabola. Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed.
Conics: Parabolas. Parabolas: The set of all points equidistant from a fixed line called the directrix and a fixed point called the focus. The vertex.
Introduction to Conic Sections Conic sections will be defined in two different ways in this unit. 1.The set of points formed by the intersection of a plane.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Objectives Write and graph the standard equation of a parabola given sufficient information.
F(x) = a(x - p) 2 + q 4.4B Chapter 4 Quadratic Functions.
Writing Equations of Parabolas
How To Graph Quadratic Equations Standard Form.
11.3 PARABOLAS Directrix (L): A line in a plane.
The Parabola 10.1.
10.1 Circles and Parabolas Conic Sections
Parabola – Locus By Mr Porter.
Warm Up circle hyperbola circle
Chapter 3 Conics 3.4 The Ellipse MATHPOWERTM 12, WESTERN EDITION
The Parabola Wednesday, November 21, 2018Wednesday, November 21, 2018
Vertex Form of Quadratics
Parabolas Warm Up Lesson Presentation Lesson Quiz
Parabolas 12-5 Warm Up Lesson Presentation Lesson Quiz
Conic Sections Parabola.
Chapter 6: Analytic Geometry
Parabolas Section
10.2 Parabolas.
Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix, and axis of symmetry.
Chapter 3 Conics 3.4 The Ellipse MATHPOWERTM 12, WESTERN EDITION
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas.
How To Graph Quadratic Equations.
Presentation transcript:

The Parabola 3.6 Chapter 3 Conics 3.6.1 MATHPOWERTM 12, WESTERN EDITION 3.6.1

The Parabola The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed point in the plane, the focus. Point Focus = Point Directrix PF = PD The parabola has one axis of symmetry, which intersects the parabola at its vertex. | p | The distance from the vertex to the focus is | p |. The distance from the directrix to the vertex is also | p |. 3.6.2

The Standard Form of the Equation of a Parabola with Vertex (0, 0) vertex (0, 0) and focus on the x-axis is y2 = 4px. The coordinates of the focus are (p, 0). The equation of the directrix is x = -p. If p > 0, the parabola opens right. If p < 0, the parabola opens left. 3.6.3

The Standard Form of the Equation of a Parabola with Vertex (0, 0) vertex (0, 0) and focus on the y-axis is x2 = 4py. The coordinates of the focus are (0, p). The equation of the directrix is y = -p. If p > 0, the parabola opens up. If p < 0, the parabola opens down. 3.6.4

A parabola has the equation y2 = -8x. Sketch the Sketching a Parabola A parabola has the equation y2 = -8x. Sketch the parabola showing the coordinates of the focus and the equation of the directrix. The vertex of the parabola is (0, 0). The focus is on the x-axis. Therefore, the standard equation is y2 = 4px. Hence, 4p = -8 p = -2. The coordinates of the focus are (-2, 0). F(-2, 0) The equation of the directrix is x = -p, therefore, x = 2. x = 2 3.6.5

Finding the Equation of a Parabola with Vertex (0, 0) A parabola has vertex (0, 0) and the focus on an axis. Write the equation of each parabola. a) The focus is (-6, 0). Since the focus is (-6, 0), the equation of the parabola is y2 = 4px. p is equal to the distance from the vertex to the focus, therefore p = -6. The equation of the parabola is y2 = -24x. b) The directrix is defined by x = 5. Since the focus is on the x-axis, the equation of the parabola is y2 = 4px. The equation of the directrix is x = -p, therefore -p = 5 or p = -5. The equation of the parabola is y2 = -20x. c) The focus is (0, 3). Since the focus is (0, 3), the equation of the parabola is x2 = 4py. p is equal to the distance from the vertex to the focus, therefore p = 3. The equation of the parabola is x2 = 12y. 3.6.6

The Standard Form of the Equation with Vertex (h, k) For a parabola with the axis of symmetry parallel to the y-axis and vertex at (h, k): The equation of the axis of symmetry is x = h. The coordinates of the focus are (h, k + p). The equation of the directrix is y = k - p. When p is positive, the parabola opens upward. When p is negative, the parabola opens downward. The standard form for parabolas parallel to the y-axis is: (x - h)2 = 4p(y - k) The general form of the parabola is Ax2 + Cy2 + Dx + Ey + F = 0 where A = 0 or C = 0. 3.6.7

The Standard Form of the Equation with Vertex (h, k) For a parabola with an axis of symmetry parallel to the x-axis and a vertex at (h, k): The equation of the axis of symmetry is y = k. The coordinates of the focus are (h + p, k). The equation of the directrix is x = h - p. When p is positive, the parabola opens to the right. When p is negative, the parabola opens to the left. The standard form for parabolas parallel to the x-axis is: (y - k)2 = 4p(x - h) 3.6.8

Finding the Equations of Parabolas Write the equation of the parabola with a focus at (3, 5) and the directrix at x = 9, in standard form and general form The distance from the focus to the directrix is 6 units, therefore, 2p = -6, p = -3. Thus, the vertex is (6, 5). The axis of symmetry is parallel to the x-axis: (y - k)2 = 4p(x - h) h = 6 and k = 5 (y - 5)2 = 4(-3)(x - 6) (y - 5)2 = -12(x - 6) (6, 5) Standard form y2 - 10y + 25 = -12x + 72 y2 + 12x - 10y - 47 = 0 General form 3.6.9

Finding the Equations of Parabolas Find the equation of the parabola that has a minimum at (-2, 6) and passes through the point (2, 8). The axis of symmetry is parallel to the y-axis. The vertex is (-2, 6), therefore, h = -2 and k = 6. Substitute into the standard form of the equation and solve for p: (x - h)2 = 4p(y - k) x = 2 and y = 8 (2 - (-2))2 = 4p(8 - 6) 16 = 8p 2 = p (x - h)2 = 4p(y - k) (x - (-2))2 = 4(2)(y - 6) (x + 2)2 = 8(y - 6) Standard form x2 + 4x + 4 = 8y - 48 x2 + 4x + 8y + 52 = 0 General form 3.6.10

Find the coordinates of the vertex and focus, Analyzing a Parabola Find the coordinates of the vertex and focus, the equation of the directrix, the axis of symmetry, and the direction of opening of y2 - 8x - 2y - 15 = 0. 4p = 8 p = 2 y2 - 8x - 2y - 15 = 0 y2 - 2y + _____ = 8x + 15 + _____ 1 1 (y - 1)2 = 8x + 16 (y - 1)2 = 8(x + 2) Standard form The vertex is (-2, 1). The focus is (0, 1). The equation of the directrix is x + 4 = 0. The axis of symmetry is y - 1 = 0. The parabola opens to the right. 3.6.11

Graphing a Parabola y2 - 10x + 6y - 11 = 0 y2 + 6y + _____ = 10x + 11 + _____ 9 9 (y + 3)2 = 10x + 20 (y + 3)2 = 10(x + 2) 3.6.12

General Effects of the Parameters A and C When A x C = 0, the resulting conic is an parabola. When A is zero: If C is positive, the parabola opens to the left. If C is negative, the parabola opens to the right. When C is zero: If A is positive, the parabola opens up. If A is negative, the parabola opens down. When A = D = 0, or when C = E = 0, a degenerate occurs. E.g., x2 + 5x + 6 = 0 x2 + 5x + 6 = 0 (x + 3)(x + 2) = 0 x + 3 = 0 or x + 2 = 0 x = -3 x = -2 The result is two vertical, parallel lines. 3.6.13

Assignment 3.6.14