Cosmology beyond the standard model Multi component dark matter model A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University.

Slides:



Advertisements
Similar presentations
Our Galaxy `. Interstellar dust obscures our view at visible wavelengths along lines of sight that lie in the plane of the galactic disk.
Advertisements

HI in Local Group Dwarf Galaxies Jana Grcevich Advisor: Mary Putman Jana Grcevich Advisor: Mary Putman.
Does the Fornax dwarf spheroidal have a central cusp or core? Collaborators: Justin Read, Ben Moore, Joachim Stadel, Marcel Zemp and George Lake Tobias.
Ultra-faint dwarfs as fossils of the First Galaxies Mia S. Bovill Advisor: Massimo Ricotti University of Maryland Mia S. Bovill Advisor: Massimo Ricotti.
Louie Strigari Main Collaborators: James Bullock, Manoj Kaplinghat (UC Irvine) Dark Matter, Small-Scale Structure, and Dwarf Galaxies Center for Cosmology.
Clusters and Superclusters
Cosmic Structure as the Quantum Interference of a Coherent Dark Wave Hsi-Yu Schive ( 薛熙于 ), Tzihong Chiueh ( 闕志鴻 ), Tom Broadhurst PASCOS (Nov. 24, 2013)
Where will supersymmetric dark matter first be seen? Liang Gao National observatories of China, CAS.
1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012.
The first stars formation in warm dark matter model Liang Gao National Observatories, China.
Simulating the joint evolution of quasars, galaxies and their large-scale distribution Springel et al., 2005 Presented by Eve LoCastro October 1, 2009.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
Astro-2: History of the Universe Lecture 4; April
The Bullet Cluster: cases for Dark Matter and MOND Benoit Famaey (Brussels) In collaboration with G.W. Angus, H.S. Zhao (St Andrews), and H.Y. Shan (Beijing)
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
Large Scale Structure of the Universe at high redshifts Large Scale Structure of the Universe at high redshifts M.Demianski, A.Doroshkevich and S.Gottloeber.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
Stellar archaeology in the Milky Way Halo Variable stars and stellar populations in the new Milky Way satellites discovered by the SDSS Variable stars.
Measuring Dark Matter Properties with Astrometry Louie Strigari TASC /20/2006 In collaboration with: James Bullock, Manoj Kaplinghat, Stelios Kazantzidis,
Particle Astrophysics & Cosmology SS Chapter 8 Structure Formation.
Dark Matter and Galaxy Formation (Section 3: Galaxy Data vs. Simulations) Joel R. Primack 2009, eprint arXiv: Presented by: Michael Solway.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
Effects of baryons on the structure of massive galaxies and clusters Oleg Gnedin University of Michigan Collisionless N-body simulations predict a nearly.
The formation of galactic disks An overview of Mo Mao & White 1998 MNRAS
Galaxy Mass Star Number/Density Counting stars in a given volume
Academic Training Lectures Rocky Kolb Fermilab, University of Chicago, & CERN Cosmology and the origin of structure Rocky I : The universe observed Rocky.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Dwarf LSB galaxies in the Virgo cluster Jonathan Davies.
1 Origin and Evolution of Structure and Streaming Flows in the Local Group Grant J. Mathews Center for Astrophysics/JINA University of Notre Dame X. Zhao.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
The Detection of an Unexplained Emission Line at 3.56 keV Esra Bulbul Harvard-Smithsonian Center for Astrophysics Maxim Markevitch (NASA/GSFC), Adam Foster.
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
Gamma-rays from Dark Matter Annihilation in Milky Way Satellites Louie Strigari UC Irvine, Center for Cosmology Getting Prepared for GLAST UCLA,
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
GALAXIES By Christopher Wrobleski & Patrick Bradford Poole.
Globular Cluters in Dwarf Galaxies. But first, a digression regarding tides... Leo I.
Anatoly Klypin New Mexico State University Also: Stefan Gottloeber (Astrophysikalisches Institut Potsdam ) Gustavo Yepes (UAM, Madrid) Andrey Kravtsov.
The Dark Matter Problem astrophysical perspectives 陈学雷 中国科学院国家天文台.
Formation of the first galaxies and reionization of the Universe: current status and problems A. Doroshkevich Astro-Space Center, FIAN, Moscow.
First galaxies and reionization of the Universe: current status and problems A. Doroshkevich Astro-Space Center, FIAN, Moscow.
The Ultra-Faint Milky Way Satellites
Formation of the first galaxies and reionization of the Universe: current status and problems A. Doroshkevich Astro-Space Center, FIAN, Moscow.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
MOND and baryonic dark matter Benoit Famaey (Brussels, ULB)
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
Galaxies: Our Galaxy: the Milky Way. . The Structure of the Milky Way Galactic Plane Galactic Center The actual structure of our Milky Way is very hard.
The Formation and Evolution of Galaxies Michael Balogh University of Waterloo.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Cheng Zhao Supervisor: Charling Tao
Astrophysics – final topics Cosmology Universe. Jeans Criterion Coldest spots in the galaxy: T ~ 10 K Composition: Mainly molecular hydrogen 1% dust EGGs.
On the Cusp of the Dark Matter Sergey Mashchenko Hugh Couchman James Wadsley McMaster University ( Nature 3/8/06; Science 29/11/07 )
2. April 2007J.Wicht : Dark Matter2 Outline ● Three lecturers spoke about Dark Matter : – John Ellis, CMB and the Early Universe – Felix Mirabel, High-Energy.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
2dF Galaxy Redshift Survey ¼ M galaxies 2003
Outline Part II. Structure Formation: Dark Matter
Distribution of Galaxies
Cooperate with X-L. Chen , Q. Yuan, X-J. Bi, Z-Q. Shen
E. Moulin, C. Medina, J.-F. Glicenstein and A. Viana IRFU, CEA-Saclay
Outline Part II. Structure Formation: Dark Matter
Presentation transcript:

Cosmology beyond the standard model Multi component dark matter model A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University of Warsaw, Warsaw, Poland

History, three K, second plane, yesterday

List of problems 1. Relativistic Astrophysics – black holes 2. Disc accretion – neutron stars 3. Supernova explosions 4. Relic radiation - recombination of the Universe 5. Nonlinear gravitational instability - Zel’dovich pancakes 6. HDM model of the Universe 7. Magnetic field in the Sun

Standard ΛCDM model Analysis of the CMB fluctuations shows that the large scale power spectrum of perturbations is the CDM like one P(k) ~ k n, n ≈ 0.96 ± for r >10Mpc, M > M  B – mode of polarisation, We show that this dependence cannot be extended to smaller scales

First DM models - HISTORY Doroshkevich et al HDM Bisnovaty-Kogan & Novikov HDM Bond, Efstathiou, Silk 1980 – CDM Bond, Szalay 1983 CDM & WDM Blumentale & Primack 1984 – CDM Doroshkevich, Khlopov 1984 – UDM, MDM Turner, Steigman, Krauss 1984 – UDM Doroshkevich, Klypin, Khlopov 1988 – MDM Mikheeva, Doroshkevich, Lukash 2007 Doroshkevich, Lukash, Mikheeva 2012 CHICAGO-2013

CMB power spectrum High precision ΛCDM model

Popular request – sterile neutrino eV < m dm < eV Six reviews during 2013 year: Feng (2013), Boyarsky et al. (2013), Dreves (2013) Kusenko & Rosenberg (2013), Horiuchi et al. (2013), Marcovic & Viel (2013). Three standard problems are discussed: 1. Number of satellites, 2. Core – cusp problem, 3. Ly-α forest. Why they are only qualitative ?

Questions and problems 1. Observed satellites: M s ~ 10 5 – 10 7 M , z cr ~ 7 –15 Typical mass resolution in simulations M ~ 10 8 M, MW-28, A-13 2.Cusp – in simulations of clusters with M > M , NFW Core – in LBG – galaxies with M < 10 9 M  Impact of baryonic component in clusters and galaxies. 3. Ly-α forest: x H ~10 -5, UV background

Direct and indirect searches DAMA – Bernabei, 2008, 2010 Super CDMS – Agnese 2013 NEGATIVE Estimates: m s > 13 – 20 keV for WDM Unstable neutrinos: m s < 3keV LAC ? X-rays 3.5keV – 73 clusters: (Bulbul et al ) Decay of DM particles or Ar recombination line

Simulations Maccio 2012 – do not reproduce observations WDM is not a viable solution of the core – cusp and satellite problems Libeskind 2013 – low mass clouds are not stable and are expanding Abel (2013) – artefacts appear, filaments Wang (2013) – unstable DM and Ly- α forest Schultz et al. ( ) – high z Dutton & Maccio ( ) – 17 realizations

Models with one type of DM particles

OUR APPROACH Process and moment of object formation Both galaxies and clusters are diversified steady – state objects. Global characteristics – mass, angular momentum,.. Periods of anisotropic compression and/or merging After virialization the structure of DM halos is frozen. Therefore we can restore the z of formation Z cr – M vir plane Links with the spectrum of perturbations. Impact of baryonic component

For central regions of the DM halo (Klypin et al. 2011) z cr -M vir plane p c =p c (z cr M 0.1 )

Walker et. al, 2009, ApJ, 704, dSph objects name r sig_v +/- Mhalf +/- +/- (1 +zcr)/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina Draco Fornax LeoI LeoII Sculptor Sextant UMi CVen I Coma Hercules Leo T Segue UMa I UMa II AndII Cetus Sgr^c Tucana Bootes Cven II Leo IV Leo V Segue AndIX AndXV mns sig Problems of detection and description r corresponds to L(r)=Ltot/2

28 dSph galaxies (Walker et al. 2009) 13 And galaxies (Tollerud et al. 2013) = 15/M (1 ± 0.12)=3/M (1 ± 0.12) = 11/M (1 ± 0.12) = 2.2/M (1 ± 0.12) For And XVI z cr ~14 For Segue I z cr ~17 For Sgr c z cr ~7

23 dSph 9 SPT-clusters

CLS – 83 dSph

Summary For 44 SPT – clusters 1 < M 13 < 300 ≈ 36(1 ± 0.37)eV/cm 3, S b ≈ 185(1 ± 0.9)keV cm 2 For 9 SPT - clusters 10 < M 13 < 80 ≈ 34(1 ± 0.25)eV/cm 3, S b ≈ 200(1 ± 0.7)keV cm 2 ≈ 3.2(1 ± 0.04)M For 9 REXCESS clusters 10 < M 13 < 70 ≈ 25(1 ± 0.5)eV/cm 3, S b ≈ 320(1 ± 0.3)keV cm 2 ≈ 2.2(1 ± 0.1) For 41 dSph galaxies < M 13 < 10 -4, 0.1 < M 6 < 100 ≈ 28(1 ± 0.8)eV/cm 3, ≈ 3.4(1 ± 0.15)M

B(z cr ) – M 12, observations

Power spectrum of MDM model

M dmp ≈10 7 M o /m s 3 (keV)

Two composite MDM models P=0.3P cdm +0.7P wdm (50eV), P=0.1P cdm +0.65P wdm (50eV)+0.25P wdm (10keV) Press, Schechter 1974, Bond et al. 1991

RESULTS According to this criterion CDM model is rejected The WDM model with P=P WDM is consistent with observations when α w ≈ 1, m w ≈ 3keV For MDM model with P=0.3P CDM +0.7P WDM f CDM ≈ 0.8, f WDM ≈ 0.2, m w ≈ 50eV For MDM model with P=0.1P CDM +0.65P WDM P WDM2 with m w1 ~ 50eV, m w2 ~ 10keV FINAL ANSWER - SIMULATIONS

The end

Small scale perturbations Linear evolution

28 dSph galaxies

CLS-83

Problems of detection and description r corresponds to L(r)=L tot /2 name r sig_v +/- Mhalf +/- +/- (1 +z cr )/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina E Draco E Fornax E LeoI E LeoII E Sculptor E Sextant E UMi E CVen I E Coma E Hercules E Leo T E Segue E UMa I E UMa II E AndII E Cetus E Sgr^c E Tucana E Bootes E Cven II E Leo IV E Leo V E Segue E AndIX E AndXV E mns 0.16E sig 0.23E Walker et. al, 2009, ApJ, 704, dSph objects