Zircon U-Pb (& Lu-Hf) isotope geochronology of the Hidaka Metamorphic Belt, Hokkaido, NE Japan Tony KEMP, Toshiaki SHIMURA Department of Geology, Niigata.

Slides:



Advertisements
Similar presentations
When did the continents grow?. Records of continental growth Continental crust Cratonic mantle Convecting mantle Atmosphere.
Advertisements

Petrology and metamorphism of amphibolites
New U/Pb and Fission track ages and their implication for the tectonic history of the Lower Kohistan Arc Complex, Northern Pakistan G. ZEILINGER, J.-P.
Klik om het opmaakprofiel te bewerken Klik om de opmaakprofielen van de modeltekst te bewerken – Tweede niveau Derde niveau – Vierde niveau » Vijfde niveau.
Klik om het opmaakprofiel te bewerken Klik om de opmaakprofielen van de modeltekst te bewerken – Tweede niveau Derde niveau – Vierde niveau » Vijfde niveau.
Subduction Factory: Its Role in the Evolution of the Solid Earth Y
Earth History GEOL 2110 Lecture 11 Origin and Early Evolution of the Earth Part 2: Differentiation of the Earth’s Spheres.
Jean-François Moyen1 & Hervé Martin2
Archaean magmatism NB- Archean (US spelling) or Archaean (UK spelling)
Geochemical Indicators of Plate Tectonic Processes in Old Rocks Julian Pearce (Cardiff University)
PRELIMINARY GEOCHRONOLOGY AND GEOCHEMISTRY OF THE HICKS BUTTE COMPLEX, CENTRAL CASCADES, WASHINGTON: POSSIBLE LINKS BETWEEN POLYGENETIC MESOZOIC ARC ROCKS.
The Archean & Proterozoic 4.0 Ga to 543 Ma. Growth of Continental Crust There is some considerable debate regarding the rate at which continental crust.
Reading: Winter (2001) Chapter 18
Crustal Growth Model for IBM: Arc Crust Evolution, Continental Crust Formation, and Crust-Mantle Transformation across The Transparent Moho IBM crust/mantle.
Silicate Earth Primitive mantle Present-day mantle Crust Oceanic crust Continental crust Reservoir Volume Mass Mass % (10 27 cm 3 )(10 27 g) Earth
Northern cordillera Eocene Plutonic Rocks. The Granite Problem? 18 th century: Plutonists versus Neptunists igneous/metamorphic sedimentary Early 20 th.
WHEN DID CONTINENTAL CRUST FORM AND WHEN WAS IT DESTROYED? THE BRAHMA/SHIVA RATIO AND THE GEOLOGIC RECORD Robert J. Stern* and David Scholl** *University.
Other clues to the formation of the Solar System Inner planets are small and dense Outer planets are large and have low density Satellites of the outer.
Granitic Rocks (Chapter 18) Image:
TIMING OF DEFORMATION IN THE CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE (CMBBTZ), SOUTHERN ONTARIO, CANADA FROM ELECTRON MICROPROBE DATING OF MONAZITE.
Proterozoic Evolution of the Western Margin of the Wyoming Craton: Implications for the Tectonic and Magmatic Evolution of the Northern Rockies Southwest.
GEOCHRONOLOGY HONOURS 2008 Lecture 08 Model Ages and Crustal Evolution.
Crustal-scale Deformation and Late Archean Terrane Suturing Keith Benn University of Ottawa Southeastern Superior Province Canada.
Time Scale Age of Oldest Rocks: 4.0 Ga 2.5 Ga EoArchean NeoArchean.
Chapter 18: Granitoid Rocks
Magmatic belts of NE Russia Vyacheslav Akinin and Paul Layer.
GEOCHRONOLOGY 2006 Lecture 04 U-Th-Pb Dating
Classification of Igneous Rocks
ESCI 101: Lecture The Rock Cycle & Igneous Rocks February 23, 2007 Copy of this lecture will be found at: With Some.
Total Heat Loss of the Earth and Heat Production in the Continental Crust Makoto Yamano Earthquake Research Institute, University of Tokyo, Japan.
Melting in the Crust: Granitoids Yosemite National Park.
Chapter 5: Igneous rocks
Chapter 4. TTG & Genesis of the Early Continental Crust.
Time scales of magmatic processes Chris Hawkesworth, Rhiannon George, Simon Turner, Georg Zellmer.
New Insights into Crustal Evolution: The Role of Hf Isotopes and Detrital Zircons Paul Mueller Darrell Henry Joseph Wooden George Kamenov Louisiana State.
David Foster - University of Florida Paul Mueller - University of Florida David Mogk - Montana State University David Foster - University of Florida Paul.
ABSTRACT 1 The felsic plutonic core of the western Talkeetna island arc crustal section, Alaska: Its formation and implications for crustal growth along.
Hadean plate tectonics – fact or fiction? Martin J.Whitehouse Swedish Museum of Natural History, Stockholm, Sweden Penrose, June 2006.
THE GEOCHEMICAL EVOLUTION OF GREATER THAN 100 MILLION YEARS OF SUBDUCTION- RELATED MAGMATISM, COAST PLUTONIC COMPLEX, WEST- CENTRAL BRITISH COLUMBIA.
The Origins of Magma and Igneous Rocks
Isotopes. Update: Midterm graded Today: What are isotopes Radioactive decay Age dating Isotopes as fingerprint Today’s lecture.
Archean Plate Tectonics: Isotopic Evidence from Samples of the Lithospheric Mantle to the Upper Crust Steven B Shirey Department of Terrestrial Magnetism.
Precambrian Geology.  Comprises 88% of geologic time  Precambrian has 2 Eons  Geology hard to Study...  Preserved rocks are metamorphosed  Very few.
Archean Rocks Best, Chapter 15A.
GEOCHRONOLOGY HONOURS 2006 Lecture 2 Interpretation of Radiogenic Isotope Data.
Consequences of magmatic intraplating: Crustal melting and magma contamination in the Norwegian Caledonides Calvin Barnes Aaron Yoshinobu Tore Prestvik.
Magmas Best, Ch. 8. Constitution of Magmas Hot molten rock T = degrees C Composed of ions or complexes Phase –Homogeneous – Separable part.
40 Ar/ 39 Ar and Fission Track constraints on Miocene Tectonics in the Buruanga Peninsula, Panay Island, Central Philippines Monika Walia 1, T. F. Yang.
Pete Loader GL4: Q1 June 2010 Partial melting can be achieved when the temperature of the mantle (indicated by the local geotherm) exceeds the.
Igneous Processes GLG Physical Geology Bob Leighty.
What can xenoliths tell us? Roberta L. Rudnick Geochemistry Laboratory Department of Geology University of Maryland Roberta L. Rudnick Geochemistry Laboratory.
Evolution of the Precambrian Rocks of Yellowstone National Park (YNP): High Grade Metamorphic Rocks at Garnet Hill Benjamin Parks 1, Cameron Davidson 1,
IV- Sillimanite zone zone Sillimanite in this zone can occur due to the occurrence of the polymorphic solid-solid reaction: andalusite  sillimanite but.
G EOL 2312 I GNEOUS AND M ETAMORPHIC P ETROLOGY Lecture 9a Diversification of Magmas February 17, 2016.
Thermal modelling of crustal stacking and exhumation during the Paleoproterozoic orogenic growth of the Fennosscandian Shield I.T. Kukkonen 1, A. Korja.
Introduction to Geochronology Part 1: The basics Geochronology & Tracers Facility NERC Isotope Geosciences Laboratory British Geological Survey.
Evolution of the Precambrian Rocks of Yellowstone National Park (YNP): Regional Overview David Mogk 1, Darrell Henry 2,Paul Mueller 3, and David Foster.
Evolution of the Lower Crust in the Point of View of Fluid-Rock Interaction Under the Bakony-Balaton Highland Volcanic Field Bianca Németh 1,2* 1Lithosphere.
Non-Traditional Isotope Laboratory
Geol 2312 Igneous and Metamorphic Petrology
The anatomy of continents
CCFS-Macquarie University, University of WA, Geological Survey WA
Geol 2312 Igneous and Metamorphic Petrology
DETRITAL ZIRCON RECORD
Tectonic petrology - robust tests of paleotectonic environments
Part II – Important igneous associations
TTGs We Have Known and Loved: 1
Department of Earth Sciences University of Windsor
Phil Thurston Laurentian University
The Wyoming Province: A Unique Archean Craton
Presentation transcript:

Zircon U-Pb (& Lu-Hf) isotope geochronology of the Hidaka Metamorphic Belt, Hokkaido, NE Japan Tony KEMP, Toshiaki SHIMURA Department of Geology, Niigata University

Tomokazu Hokada, Daniel Dunkley National Institute for Polar Research, Tokyo, Japan Richard Hinton Edinburgh Ion Microprobe Facility, Edinburgh University, UK Chris Hawkesworth Department of Earth Sciences, University of Bristol, UK Collaborators

Micro-chronology of zircon U-Pb isotopes Crystallisation age Lu-Hf isotopes Source age Ion microprobe Laser Ablation

Hidaka Metamorphic Belt ‘an exposed crustal slab derived from an immature island arc’ (Komatsu et al. 1986; Osanai et al. 1991)

Hidaka Metamorphic Belt Idealised succession of the metamorphic and igneous rocks in the ‘Hidaka Crust’ (modified from Komatsu et al. 1986) 1.What is the temporal framework? 2.Magmatic differentiation mechanisms?  Crustal evolutionary processes in arcs

Most K-Ar and Rb-Sr mineral ages cluster around Ma and Ma Owada et al 1991 : peak metamorphism and anatexis at 56 ± 6.1 Ma (WR Rb-Sr isochron) Usuki et al 2002 : granulite facies metamorphism at Ma (SHRIMP U-Pb on thin zircon rims) Maeda et al. 1990: Gabbro-diorite-granite K-Ar WR ages of Ma. Cooling/exhumation ages (??) Previous age studies

Pankenushi 2-Px Gabbro Niikappu Basal S-type tonalite Basal I-type tonalite Lower S-type tonalite Pankenushi Basal S-type tonalite & Enclave Satsunai Middle S-type tonalite Middle I-type tonalite Nissho Upper S-type granite Nupinai Upper I-type granite Horobetsu Grt-Opx granulite Opx-Crd-Ged granulite Opx mafic granulite Horoman Mafic layer in peridotite Pipairo Middle S-type tonalite Sample localities

Basal I-type tonalite Qtz + pl + opx + hbl + bt Basal S-type tonalite Qtz + pl + opx + grt + bt Mafic granuliteMetased. granulite Contrasting sources

Middle ‘I-type’ tonalite Centre of body Assimilation of metasedimentary rock at the periphery Margin of body

Middle hbl-bt tonalite Upper bt-hbl granite Basal opx-hbl tonalite I-type zircons

I-type samples #1 BASAL I-TYPE TONALITE (Niikappu) Data at 2  Concordia diagramAverage Pb/U age

I-type samples #2 MIDDLE I-TYPE TONALITE (Satsunai) Data at 2  Concordia diagramAverage Pb/U age

I-type samples #3 UPPER I-TYPE GRANITE (Nupinai) Data at 2  Concordia diagramAverage Pb/U age

Basal S-type zircons 53 Ma 42 Ma 19 Ma

Basal S-types Grt-opx tonalites - Pankenushi & Niikappu

Pipairo crd tonaliteSatsunai ms tonalite 71 Ma All ca. 37 Ma 53 Ma 37 Ma 38 Ma 52 Ma 46 Ma 37 Ma 38 Ma 112

Middle S-types Ms-bt-crd tonalites - Satsunai & Pipairo

Upper S-type Biotite granite - Nissho

Grt-opx granulite Grt-opx-crd granulite 21 Ma 19 Ma 18 Ma 54 Ma Metased. granulites 19 Ma

Metased. granulites

S-type vs granulite zircons S-type rims = magmatic Granulite rims = metamc 50 Ma zircons in S-types derived from metas. protolith

Mafic rocks Mafic granulite (MORB-like meta-basalt) 2-px gabbro (MORB-like) Magmatic zircons  igneous crystallisation ages

Summary of U-Pb Ages Two magmatic pulses in the Hidaka Belt ca. 19 Ma (early Miocene) è crystallisation of MORB-like gabbros è granulite facies MM and partial melting è generation of S-type magmas è emplacement of I-type magmas at all crustal levels è mid-crustal anatexis/assimilation ca. 37 Ma (late Eocene)

Lu-Hf isotopes in zircon - zircon has low Lu/Hf (< 0.001) è preserve initial 176 Hf/ 177 Hf of magma - robust, high Hf content (~1%) è impervious to isotopic disturbance - zoning in 176 Hf/ 177 Hf è source rocks, magmatic evolution (e.g. Griffin et al Lithos 61, ) Why?

 Hf (t) Yb / Hf Lu-Hf isotopes in zircon zrc crystallisation Depleted mantle +16 crustal contamination Mantle input

 Hf (t) zrc crystallisation Depleted mantle +16 crustal contamination Lu-Hf isotopes in zircon Yb / Hf

 Hf (t) zrc crystallisation Depleted mantle +16 crustal contamination Lu-Hf isotopes in zircon Yb / Hf

4 6 8  Hf (t) Age (Ma) Hf isotope evolution 18 20

4 6 8  Hf (t) Age (Ma) Hf isotope evolution 18 20

Conclusions Hidaka magmatic arc was assembled episodically 37 Ma - I-type (?arc) magmatism - juvenile crustal growth 19 Ma - S-type magmatism & granulite formation - recycling of older crustal materials driven by mafic magma under-plating What were the tectonic controls?