Numerical Weather Prediction (Met DA) The Analysis of Satellite Data

Slides:



Advertisements
Similar presentations
Numerical Weather Prediction (Met DA) The Analysis of Satellite Data lecture 2 Tony McNally ECMWF.
Advertisements

Numerical Weather Prediction (Met DA) The Analysis of Satellite Data
Numerical Weather Prediction (Met DA) The Analysis of Satellite Data lecture 2 Tony McNally ECMWF.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course 1 to 4 July 2013.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Numerical Weather Prediction (Met DA) The Analysis of Satellite Data lecture 2 Tony McNally ECMWF.
ECMWF MetTraining Course- Data Assimilation and use of satellite data (3 May 2005) The Global Observing System Overview of data sources Data coverage Data.
NCAS Atmospheric Measurement Summer School, September 2010 Page 1/12 Deriving useful information from satellite data (a remote sensing application) Satellite.
A fast physical algorithm for hyperspectral sounding retrieval Zhenglong Li #, Jun Li #, Timothy J. and M. Paul Menzel # # Cooperative Institute.
Characterization of ATMS Bias Using GPSRO Observations Lin Lin 1,2, Fuzhong Weng 2 and Xiaolei Zou 3 1 Earth Resources Technology, Inc.
Data Assimilation Andrew Collard. Overview Introduction to Atmospheric Data Assimilation Control Variables Observations Background Error Covariance Summary.
Maturation of Data Assimilation Over the Last Two Decades John C. Derber Environmental Modeling Center NCEP/NWS/NOAA.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Cooperative Institute for Research in the Atmosphere Introduction to Remote Sensing Stan Kidder COMET Faculty Course Boulder, CO August 9, 2011
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Passive Microwave Rain Rate Remote Sensing Christopher D. Elvidge, Ph.D. NOAA-NESDIS National Geophysical Data Center E/GC2 325 Broadway, Boulder, Colorado.
ATS 351 Lecture 8 Satellites
Atmospheric Emission.
REMOTE SENSING & THE INVERSE PROBLEM “Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis.
ECMWF – 1© European Centre for Medium-Range Weather Forecasts Developments in the use of AMSU-A, ATMS and HIRS data at ECMWF Heather Lawrence, first-year.
Data assimilation of polar orbiting satellites at ECMWF
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
Five techniques for liquid water cloud detection and analysis using AMSU NameBrief description Data inputs Weng1= NESDIS day one method (Weng and Grody)
Numerical Weather Prediction (Met DA) The Analysis of Satellite Data (lecture 1:Basic Concepts) Tony McNally ECMWF.
SMOS+ STORM Evolution Kick-off Meeting, 2 April 2014 SOLab work description Zabolotskikh E., Kudryavtsev V.
The vertical resolution of the IASI assimilation system – how sensitive is the analysis to the misspecification of background errors? Fiona Hilton and.
Lecture 6 Observational network Direct measurements (in situ= in place) Indirect measurements, remote sensing Application of satellite observations to.
What are the four principal windows (by wavelength interval) open to effective remote sensing from above the atmosphere ? 1) Visible-Near IR ( );
Lessons on Satellite Meteorology Part VII: Metop Introduction to Metop Instruments The sounders with focus on IASI The GRAS instrument The ASCAT scatterometer.
Passive Microwave Remote Sensing
A NON-RAINING 1DVAR RETRIEVAL FOR GMI DAVID DUNCAN JCSDA COLLOQUIUM 7/30/15.
CrIS Use or disclosure of data contained on this sheet is subject to NPOESS Program restrictions. ITT INDUSTRIES AER BOMEM BALL DRS EDR Algorithms for.
Modern Era Retrospective-analysis for Research and Applications: Introduction to NASA’s Modern Era Retrospective-analysis for Research and Applications:
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Infrared Temperature and.
USE OF AIRS/AMSU DATA FOR WEATHER AND CLIMATE RESEARCH Joel Susskind University of Maryland May 12, 2005.
Water Vapour & Cloud from Satellite and the Earth's Radiation Balance
Slide 1 VAISALA Award Lecture Characterising the FY-3A Microwave Temperature Sounder Using the ECMWF Model Qifeng Lu, William Bell, Peter Bauer, Niels.
AIRS Radiance and Geophysical Products: Methodology and Validation Mitch Goldberg, Larry McMillin NOAA/NESDIS Walter Wolf, Lihang Zhou, Yanni Qu and M.
ICDC7, Boulder September 2005 Estimation of atmospheric CO 2 from AIRS infrared satellite radiances in the ECMWF data assimilation system Richard.
An Introduction to Optimal Estimation Theory Chris O´Dell AT652 Fall 2013.
Layered Water Vapor Quick Guide by NASA / SPoRT and CIRA Why is the Layered Water Vapor Product important? Water vapor is essential for creating clouds,
CO 2 retrievals from IR sounding measurements and its influence on temperature retrievals By Graeme L Stephens and Richard Engelen Pose two questions:
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
MIIDAPS Application to GSI for QC and Dynamic Emissivity in Passive Microwave Data Assimilation.
Considerations for the Physical Inversion of Cloudy Radiometric Satellite Observations.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
Retrieval of cloud parameters from the new sensor generation satellite multispectral measurement F. ROMANO and V. CUOMO ITSC-XII Lorne, Victoria, Australia.
A New Ocean Suite Algorithm for AMSR2 David I. Duncan September 16 th, 2015 AMSR Science Team Meeting Huntsville, AL.
1 Atmospheric Radiation – Lecture 13 PHY Lecture 13 Remote sensing using emitted IR radiation.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
The assimilation of satellite radiances in LM F. Di Giuseppe, B. Krzeminski,R. Hess, C. Shraff (1) ARPA-SIM Italy (2) IMGW,Poland (3)DWD, Germany.
Radiance Simulation System for OSSE  Objectives  To evaluate the impact of observing system data under the context of numerical weather analysis and.
Workshop on Soundings from High Spectral Resolution Infrared Observations May 6-8, 2003 University of Wisconsin-Madison.
© Crown copyright Met Office Assimilating infra-red sounder data over land John Eyre for Ed Pavelin Met Office, UK Acknowledgements: Brett Candy DAOS-WG,
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Passive Microwave Remote Sensing
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course Mar 2016.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
What is atmospheric radiative transfer?
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Summer 2014 Group Meeting August 14, 2014 Scott Sieron
Tony Reale ATOVS Sounding Products (ITSVC-12)
In the past thirty five years NOAA, with help from NASA, has established a remote sensing capability on polar and geostationary platforms that has proven.
Component decomposition of IASI measurements
Initialization of Numerical Forecast Models with Satellite data
Radiometer channel optimization for precipitation remote sensing
Satellite Foundational Course for JPSS (SatFC-J)
A Linear Approach to Cloud Clearing for Hyperspectral Sounders
Presentation transcript:

Numerical Weather Prediction (Met DA) The Analysis of Satellite Data (lecture 1:Basic Concepts) Tony McNally ECMWF

INTRODUCTION …is satellite data important for NWP ? …what does a satellite instrument measure ? …different types of satellite instrument 2. ATMOSPHERIC TEMPERATURE SOUNDING …weighting functions …definition of the forward and inverse problem 3. RETRIEVAL (inverse) ALGORITHMS …solutions to reduced (simplified) problems …statistical regression methods …forecast background (1DVAR) methods 4. DIRECT RADIANCE ASSIMILATION …the use of pre-processed (corrected) radiance observations …the use of raw radiance observations 5. SUMMARY

…first some key terms….

Key elements of the NWP system The forecast model time evolves fields of geophysical parameters (e.g. T/Q/U/V/Ps/O3) following the laws of thermodynamics and chemistry The initial conditions used to start the forecast model are provided by the analysis The analysis is generated from observations relating to the geophysical parameters combined with a priori background information (usually a short-range forecast from the previous analysis). This combination process is known as data assimilation

intermittently correct The Data Assimilation Process Observations intermittently correct the time evolution (or trajectory) of the forecast model

…is satellite data important for NWP… ?

A 4 month sample of ECMWF forecasts with different observations deliberately withdrawn Observing System Experiments (OSEs), are aimed at measuring the impact of different types of observation, …these routinely confirm that satellite data are the single most important component of the global observing network for NWP. Forecast skill N. Hemisphere Forecast skill S. Hemisphere

Some of the main Satellite instruments currently used at ECMWF On NOAA / NASA / EUMETSAT polar orbiting spacecraft High resolution IR Sounder (HIRS), Advanced Microwave Sounding Unit (AMSU), Atmospheric IR Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI), Advanced Microwave Scanning Radiometer (AMSR), TRMM (TMI) On DMSP polar orbiting spacecraft Special Sensor Microwave Imager (SSMI,SSMI/S) Geostationary spacecraft METEOSAT , GOES , GMS / MTSAT Scatterometer spacecraft ERS / Quickscat / ASCAT GPS spacecraft METOP-GRAS / COSMIC Covered in other lectures

What do satellite instruments measure ?

What do satellite instruments measure? They DO NOT measure TEMPERATURE They DO NOT measure HUMIDITY or OZONE They DO NOT measure WIND Satellite instruments simply measure the radiance L that reaches the top of the atmosphere at given frequency v . The measured radiance is related to geophysical atmospheric variables (T,Q,O3, clouds etc…) by the radiative transfer equation measured by the satellite Our description of the atmosphere Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ... Planck source term* depending on temperature of the atmosphere Absorption in the atmosphere Other contributions to the measured radiances

The Radiative Transfer (RT) equation measured by the satellite depends on the state of the atmosphere Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ... (Details of the RT equation are covered more in other lectures…Geer + Matricardi).

The Radiative Transfer (RT) equation “Forward problem” measured by the satellite depends on the state of the atmosphere Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ... …given the state of the atmosphere, what is the radiance…?

The Radiative Transfer (RT) equation …given the radiance, what is the state of the atmosphere…? measured by the satellite depends on the state of the atmosphere Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ... “Inverse problem”

The Radiative Transfer (RT) equation “Forward problem” measured by the satellite depends on the state of the atmosphere Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ... “Inverse problem”

How can we simplify the forward and inverse problems ?

Measuring radiances in different frequencies (channels) By deliberately selecting radiation at different frequencies or CHANNELS satellite instruments can provide information on specific geophysical variables for different regions of the atmosphere. In general, the frequencies / channels used within NWP may be categorized as one of 3 different types … atmospheric sounding channels (passive instruments) surface sensing channels (passive instruments) surface sensing channels (active instruments) Note: In practice (and often despite their name!) real satellite instruments have channels which are a combination of atmospheric sounding and surface sensing channels

1. ATMOSPHERIC SOUNDING CHANNELS Atmospheric sounding channels with no contribution from the surface

1. ATMOSPHERIC SOUNDING CHANNELS Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ...

1. ATMOSPHERIC SOUNDING CHANNELS Surface reflection/ scattering Surface emission Cloud/rain contribution + + + + ...

1. ATMOSPHERIC SOUNDING CHANNELS These channels are located in parts of the infra-red and microwave spectrum for which the main contribution to the measured radiance is from the atmosphere and can be written: Where B=Planck function t = transmittance T(z) is the temperature z is a height coordinate That is they try to avoid frequencies for which surface radiation and cloud contributions are important. They are primarily used to obtain information about atmospheric temperature and humidity (or other constituents that influence the transmittance e.g. CO2). AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)

2. SURFACE SENSING CHANNELS (PASSIVE) Surface sensing channels with no contribution from the atmosphere

2. SURFACE SENSING CHANNELS (PASSIVE) reflection/ scattering Surface emission Cloud/rain contribution + + + + ...

2. SURFACE SENSING CHANNELS (PASSIVE) reflection/ scattering Surface emission Cloud/rain contribution + + + + ...

2. SURFACE SENSING CHANNELS (PASSIVE) These are located in window regions of the infra-red and microwave spectrum at frequencies where there is very little interaction with the atmosphere and the primary contribution to the measured radiance is: Where Tsurf is the surface skin temperature and E the surface emissivity B[v,Tsurf ](u,v) (i.e. surface emission) These are primarily used to obtain information on the surface temperature and quantities that influence the surface emissivity such as wind (ocean) and vegetation (land). They can also be used to obtain information on clouds/rain and cloud movements (to provide wind information) SSM/I channel 7 (89GHz) HIRS channel 8 (11microns)

3. SURFACE SENSING CHANNELS (ACTIVE) reflection/ scattering Surface emission Cloud/rain contribution + + + + ...

3. SURFACE SENSING CHANNELS (ACTIVE) reflection/ scattering Surface emission Surface emission Cloud/rain contribution + + + + + ...

3. SURFACE SENSING CHANNELS (ACTIVE) These (e.g. scatterometers) actively illuminate the surface in window parts of the spectrum such that surface scattering [ (u,v) ] These primarily provide information on ocean winds (via the relationship with sea-surface emissivity ) without the strong surface temperature ambiguity . Quick-scat

What type of channels are most important for NWP ?

Atmospheric temperature sounding

ATMOSPHERIC TEMPERATURE SOUNDING If radiation is selected in a sounding channel for which and we define a function K(z) = When the primary absorber is a well mixed gas (e.g. oxygen or CO2) with known concentration it can be seen that the measured radiance is essentially a weighted average of the atmospheric temperature profile, or The function K(z) that defines this vertical average is known as a WEIGHTING FUNCTION

IDEAL WEIGHTING FUNCTIONS If the weighting function was a delta-function - this would mean that the measured radiance in a given channel is sensitive to the temperature at a single level in the atmosphere. z K(z) If the weighting function was a box-car function, this would mean that the measured radiance in a given channel was only sensitive to the temperature between two discrete atmospheric levels z K(z)

REAL ATMOSPHERIC WEIGHTING FUNCTIONS High in the atmosphere very little radiation is emitted, but most will reach the top of the atmosphere z At some level there is an optimal balance between the amount of radiation emitted and the amount reaching the top of the atmosphere K(z) A lot of radiation is emitted from the dense lower atmosphere, but very little survives to the top of the atmosphere due to absorption. K(z)

REAL WEIGHTING FUNCTIONS continued... The altitude at which the peak of the weighting function occurs depends on the strength of absorption for a given channel Channels in parts of the spectrum where the absorption is strong (e.g. near the centre of CO2 or O2 lines ) peak high in the atmosphere Channels in parts of the spectrum where the absorption is weak (e.g. in the wings of CO2 O2 lines) peak low in the atmosphere AMSUA By selecting a number of channels with varying absorption strengths we sample the atmospheric temperature at different altitudes

MORE REAL WEIGHTING FUNCTIONS ... HIRS 19 channels AMSUA 15 channels AIRS 2378 IASI 8461

…i.e. how do we solve the inverse problem…. How do we extract atmospheric information (e.g. temperature) from satellite radiances ? …i.e. how do we solve the inverse problem….

EXTRACTING ATMOSPHERIC TEMPERATURE FROM RADIANCE MEASUREMENTS If we know the entire atmospheric temperature profile T(z) then we can compute (uniquely) the radiances a sounding instrument would measure using the radiative transfer equation. This is the forward problem In order to extract or retrieve or analyze the atmospheric temperature profile from a set of measured radiances we must solve the inverse problem Unfortunately as the weighting functions are generally broad and we have a finite number of channels, the inverse problem is formally ill-posed because an infinite number of different temperature profiles could give the same measured radiances !!! See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624

“Direct Radiance Assimilation” “Retrievals” and “Direct Radiance Assimilation”

“Direct Radiance Assimilation” “Retrievals” and “Direct Radiance Assimilation”

SATELLITE RETRIEVAL ALGORITHMS for NWP The linear data assimilation schemes used in the past at ECMWF such as Optimal Interpolation (OI) were unable to assimilate radiance observations directly (as they were nonlinearly related to the analysis variables) and the radiances had to be explicitly converted to temperature products before the analysis. This conversion was achieved using a variety of retrieval algorithms that differed in the way they used prior information All retrieval schemes use some (either explicit of implicit) form of prior information to supplement the information of the measured radiances and solve the inverse problem Three different types of retrieval have been used in the past for NWP: Solutions to reduced inverse problems Regression / Neural Net (statistical) methods Forecast background (1DVAR) methods

1. Solutions to reduced inverse problems We acknowledge that there is a limited amount of information in the measured radiances and re-formulate the ill-posed inverse problem in terms of a reduced number of unknown variables that can be better estimated by the data e.g. Deep mean layer temperatures, Total Column Water / Ozone or EOF’s (eigenfunctions) Unfortunately it is difficult to objectively quantify the error in these quantities (which is very important to use the retrieval in NWP) due to the sometimes subjective choice of reduced representation. 2. Regression and Library search methods Using a sample of temperature profiles matched (collocated) with a sample of radiance observations/simulations, a statistical relationship is derived that predicts e.g atmospheric temperature from the measured radiance. e.g. NESDIS operational retrievals or the 3I approach These tend to be limited by the statistical characteristics of the training sample / profile library and will not produce physically important features if they are statistically rare in the training sample. Furthermore, their assimilation can destroy sharp physical features in the analysis! 3. Forecast Background or 1D-Var Methods These use an explicit background or first-guess profile from a short range forecast and perform optimal adjustments using the measured radiances. The adjustments minimize a cost function

1D-Var RETRIEVALS AND THE COST FUNCTION It can be shown that maximum likelihood approach to solving the inverse problem (which is a particular case of the generalized analysis problem covered in previous lectures replacing T(z) with a vector x and L with y) requires the minimization of a cost function J which is a combination of 2 distinct terms. 1D state or profile Radiance vector RT equation Fit of the solution to the background estimate of the atmospheric state weighted inversely by the background error covariance B (note this is not the Planck function!) Fit of the solution to the measured radiances (y) weighted inversely by the measurement error covariance R (observation error + error in observation operator H) The solution obtained is optimal in that it fits the prior (or background) information and and measured radiances respecting the uncertainty in both.

Sa = B - 1D-Var RETRIEVALS continued … HB One simple linear form of the 1D-Var solution obtained by minimization of the cost function is given by the expression: correction term Here we see that the retrieved profile (Xa) is equal to the background profile (Xb) plus a correction term applied. Furthermore we can quantify the error covariance Sa of the 1D-Var retrieval which is needed for subsequent assimilation: Sa = B - HB improvement term The retrieval being an improvement over the background information (assuming all parameters are correctly specified).

1D-Var RETRIEVALS continued … The magnitude of the improvement over the background clearly depends on a number of parameters, but one crucial factor is the number of channels and shape of the weighting functions implied by the radiative transfer operator H HIRS 19 channels IASI 8461 channels

CHARACTERISTICS OF 1D-Var RETRIEVALS These have a number of advantages that make them more suitable for NWP assimilation than other retrieval methods The prior information (short-range forecast) is very accurate (more than statistical climatology) which improves retrieval accuracy. The prior information contains information about physically important features such as fronts, inversions and the tropopause. The error covariance of the prior information and resulting retrieval is better known (crucial for the subsequent assimilation process). The 1DVAR is a very clean 1D analogue of the full 3D/4D assimilation process using consistent auxiliary information (B,R,H,Xb) BUT the error characteristics of the 1DVAR retrieval may still be very complicated due to its correlation with the forecast background which will be used again in the main analysis… Direct radiance assimilation…?

… But do we still really need to do explicit retrievals for NWP ?

“Direct Radiance Assimilation” “Retrievals” and “Direct Radiance Assimilation”

“Observation operator” H = radiative transfer equation DIRECT ASSIMILATION OF RADIANCE DATA Variational analysis methods such as 3DVAR and 4DVAR allow the direct assimilation of radiance observations (without the need for and explicit retrieval step). This is because such methods do not require a linear relationship between the observed quantity and the analysis variables (just local tangent linear steps) The retrieval is essentially incorporated within the main analysis by finding the 3D or 4D state of the atmosphere that minimizes “Observation operator” H = radiative transfer equation Vector of all observed data 3/4D atmospheric state vector In direct radiance assimilation the forecast background still provides the prior information to supplement the radiances, but it is not used twice (as would be the case if 1D-Var retrievals were assimilated ).

DIRECT ASSIMILATION OF RADIANCE DATA By the direct assimilation of radiances we avoid the problem of assimilating retrievals with complicated error structures and using background information twice. BUT There are still a number of significant problems that must be handled 1) specifying the covariance (B) of background errors 2) specifying the covariance (R) of radiance error 3) removing biases and ambiguities in the radiances / RT model Some of these issues (2) are greatly simplified by the direct assimilation of raw (unprocessed) radiance observations

USE OF RAW (UNPROCESSED) RADIANCE DATA Our understanding of radiance errors R is made easier if the observations have not been heavily preprocessed (e.g. cloud clearing, limb adjustment, surface corrected etc..) Other advantages of assimilating raw radiance data are: Avoid having to change (retune) our assimilation system when the data provider changes the pre-processing Faster access to data from new platforms (e.g. AMSU data from NOAA-16 assimilated 6 weeks after launch) Allows consistent treatment of historical data for re-analysis projects (ERA-40) and other climate studies BUT…it means we have to explicitly handle the effect of clouds and scan geometry on the data ourselves…

A QUICK REVIEW OF KEY CONCEPTS Satellite instruments measure radiance (not T,Q or wind) Sounding radiances are broad vertical averages of the temperature profile (defined by the weighting functions) The estimation of atmospheric temperature from the radiances is ill- posed and all retrieval algorithms use some sort of prior information There has been an evolution in NWP away from the use of retrievals to the direct assimilation of radiances with simpler error characteristics To further simplify the assimilation process, NWP centres have moved towards the direct assimilation of raw radiances

Topics covered in Lecture 2: …Direct Radiance Assimilation …. 1. BACKGROUND ERROR STRUCTURES Why are they important ? How do we estimate them ? 2. AMBIGUITY BETWEEN VARIABLES Temperature and humidity Surface and the atmosphere Clouds / precipitation and the atmosphere 3. SYSTEMATIC ERRORS 4. WIND ADJUSTMENTS FROM RADIANCES Direct and indirect wind adjustments

End… Questions ?

Planck Source Term (or B from the RT equation)