H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs.

Slides:



Advertisements
Similar presentations
Outline 1. Chronology of display technology 2. Advantages of LEDs 3. Definition of OLED 4. Principles of operation 5. Technology Branches SMOLEDs LEPs.
Advertisements

LCD TFT LED-OLED CCD CMOS DISPLAY SYSTEMS AND PHOTOSENSORS (PART 3)
Photoelectrochemistry (ch. 18)
Organic Light-Emitting Diodes (OLEDs) ECE 4611 By Sean Davey and Jacob Walker Image Courtesy of Topper Choice
 OLED stands for Organic Light-Emitting Diodes  It’s a solid-state semiconductor device that is 100 to 500 nanometers thick.  Consists of 5 Layers.
CH. 3 Solar Cell Basic III: Principle Organic Materials for Electronics and Photonics II.
Organic Light-Emitting Diodes By: Grant Warfield.
Nesibe Lakhani EECS 277A Prof. Richard Nelson
Utilizing Carbon Nanotubes to Improve Efficiency of Organic Solar Cells ENMA 490 Spring 2006.
Organic Light Emitting Diodes (OLEDs) Physics 496/487 Matt Strassler.
Polymeric Electroluminescent Devices K W Wong Department of Physics The Chinese University of Hong Kong.
The Science of Digital Media Flat Panel Displays 7May Metropolia University of Applied Sciences Display Technologies Seminar.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Technology Trends of Organic Devices
OLED Devices and Applications
Quantum Dot White LEDs Jennifer Asis EECS 277A. Motivation Science Energy efficient Long life Durable Small size Design flexibility.
Introduction Purpose  To introduce Newhaven Display International Inc.’s full color OLED displays Objective  Discuss general overview of OLED technology.
Future Trends of Televisions By: Rion Núñez Team 11.
Introduction to display technologies Jean-Michel Lechevallier.
O RGANIC L IGHT E MITTING D IODES Andrew Sanders, Fawzi Salama, John P. Handrigan 12/02/2010.
Solid State Lighting: The Future is here Xavier Fernando Ryerson University.
© Imperial College London 1 Photovoltaics: Research at Imperial College Jenny Nelson Department of Physics Imperial College London Grantham Climate Change.
1 Chapter 2 Electic-ight conversion. 2 p-n junction We insert atoms of another material (called dopants) into a semiconductor so that either a majority.
Organic Electronics Yousof Mortazavi VLSI Course Presentation December 2004.
1 Organic Light-Emitting Diodes: Basic Concepts Basic Concepts Bernard Kippelen.
Organic Light-Emitting Diodes
Contents of the Lecture
Nathan Duderstadt, Chemical Engineering, University of Cincinnati Stoney Sutton, Electrical Engineering, University of Cincinnati Kate Yoshino, Engineering.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Principles of Solar Cells, LEDs and Diodes: The role of the PN junction, First Edition. Adrian Kitai. © 2011 John Wiley & Sons, Ltd. Published 2011 by.
1 Organic LEDs – part 8 Exciton Dynamics in Disordered Organic Thin Films Quantum Dot LEDs Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002). April.
POLYMER LED Presented By UMAKANTA MOHAPATRO ROLL # EI
Chapter 4: Electroluminescence
OLEDs – THEORY AND FABRICATION ABSTRACT: Organic Light Emitting Diodes are quickly becoming the cutting edge in display technology. This presentation will.
WHITE LED S Yogesh Kumar 2008ph10643 Group no. 3 Course- EPL335.
A Blue Exciton-Polariton Organic Light-Emitting Device
Jay Dhamsaniya Rakesh Adroja Department of E & C Engineering Institute of Technology Nirma University Ahemedabad OCT
Semi-conducting organic polymers and Inorganic semiconductor nano-crystals Nir Tessler EE Dept. Technion.
A New [5] Helicene Derivative as Novel Emissive Material
Plank Formula The 1900 quantum hypothesis by Max Planck that any energy is radiated and absorbed in quantities divisible by discrete ‘energy elements’,
A. Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Highly efficient multilayer organic pure-blue- light.
Daniel Bowser Fernando Robelo
Electronic and Optoelectronic Polymers Wen-Chang Chen Department of Chemical Engineering Institute of Polymer Science and Engineering National Taiwan University.
Meeting 2014-October WP1 INL : Simulation for Laser Interference Lithography sample (PI32) -2. Possible alternative: patterning of the front electrode.
White Light-Emitting Diodes Robert Nicholas & Daniel Freno Junior Lab Spring 2007.
Organic Light Emitting Diode (OLED)
Eletrophosphorescence from Organic Materials Excitons generated by charge recombination in organic LEDs Spin statistics says the ratio of singlet : triplet,
By: Christopher Heil November 18, What is OLED? An Organic Light-emitting Diode (OLED) is a light emitting diode (LED) that is made of semiconducting.
OLEDs Theory & Fabrication
Improving the efficiency of OLED + other interesting results from UST Hoi-Sing Kwok Man Wong Ben-Zhong Tang (Chem) Cheng-Feng Qiu Hai-Ying Chen Zhi-Guo.
Great Company Great People Thin Film Encapsulation 기존 TFT- LCD 상판 Glass TFT Glass Back Light 20 grams 5 mm 10% $ grams 5 mm 10% Weight Thickness.
Date of download: 6/20/2016 Copyright © 2016 SPIE. All rights reserved. Current efficiencies of light-emitting diodes (LEDs) and organic light-emitting.
1/9 OLED (Organic Light Emitting Diode) Display Engineering.
Organic Light Emitting Devices (OLEDs). 2 OLED is the acronym for Organic Light Emitting Diode An OLED is a solid-state device composed of thin films.
Fabrication and characterization of solution processed vertical organic light-emitting device Mohd Arif Mohd Sarjidan 1, a *, Ahmad Shuhaimi 2,b and Wan.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Principles of outcoupling in organic light-emitting diodes (OLEDs). (a) Illustration.
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. Sources of loss in a phosphor-converted LED luminaire (Ref. ). Figure Legend: From:
A UDIO -V IDEO S YSTEM P RESENTATION T OPIC : HDTV 3 DTV OLED TV M ADE BY : D EEPIKA KUDDANNAYA S ANGEETA CHANDEL A BHISHEK DUBEY A DITYA MOHANTA.
Physics of Semiconductor Devices
OLEDs Theory & Fabrication
Physics of Semiconductor Devices Mr. Zeeshan Ali, Asst. Professor
ORGANIC LIGHT EMITTING DIODES
Seminar OLED Technology On
“ORGANIC LIGHT EMITTING DIODE"
Organic LIGHT EMITTING DIODE
Utilizing Carbon Nanotubes to Improve Efficiency of Organic Solar Cells ENMA 490 Spring 2006.
The effect of spin-orbital coupling and buffer layer to magnetic effect on Organic Light-Emitting Device Z. Y. Sun, B. F. Ding, X. M. Ding, X. Y. Hou Sample.
Chapter – 12 Organic Light Emitting Diodes
Christopher Morton, PhD
Triplet Sensitization by Lead Halide Perovskite Thin Films for Efficient Solid-State Photon Upconversion at Subsolar Fluxes  Sarah Wieghold, Alexander.
Presentation transcript:

H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs by shifting the position of an ultrathin yellow layer in a blue matrix. D. Adès, A. Siove, Lab. Biomateriaux et Polymères de Spécialité, Univ. Paris Nord, France N.Lemaitre, B. Geffroy Lab. Cellules et Composants, CEA Saclay, France

CLEO ’06 – Long Beach (USA) 2 WHITE oleds WHITE oleds applications Solid-state LIGHTING : efficient and energy-saving large areas (≠ inorganic leds) and potentially flexible devices : new paradigm in lighting Pixels or backlight panels for DISPLAYS Demanding requirements to compete with fluorescent and incandescent light bulbs : 1) 100% internal quantum efficiency (phosphorescent materials ?) 2) Low operational voltages and power consumption ( p and n-doped injection layers ?) 3) efficient and reliable color-mixing schemes to achieve white

CLEO ’06 – Long Beach (USA) 3 INTRODUCTION Getting white from OLEDs : Down-Conversion (Blue OLED + Phosphors) Using exciplex/excimer emission Mixing basic colors in a single layer (« doping ») Mixing colors obtained in separate regions engineering of the recombination zone microcavity effects

CLEO ’06 – Long Beach (USA) 4 INTRODUCTION : underlying concepts Mixing two complementary colors in appropriate proportions : blue + yellow « doping strategy » = mixing a small proportion (typ. <5%) of yellow emitter in a blue matrix →  accurate control of weak doping levels difficult ð Alternative : Including an ultrathin yellow layer in a blue matrix : better control of the thin film deposition Varying different parameters (thickness, position) to finely tune the color

CLEO ’06 – Long Beach (USA) 5 STRUCTURE of the OLEDs + Glass substrate Anode ITO HIL HTL ETL Cathode (Al+LiF) EL (blue) EL (yellow) Thin film deposition by thermal evaporation under high vacuum (10 -7 torr) Anode ITO nm Cathode LUMO HOMO CuPc 10 nm ETL NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm HIL HTL Blue Emitter Yellow Emitter

CLEO ’06 – Long Beach (USA) 6 absorption Photoluminescence CHEMISTRY Well-known materials : CuPc Alq 3 NPB DPVBi Rubrene Transporting layers Emitting layers Anode ITO nm Cathode LUMO HOMO CuPc 10 nm ETL NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm HIL HTL Blue Emitter Yellow Emitter + Efficient Förster energy transfer (Blue) (Yellow)

CLEO ’06 – Long Beach (USA) 7 WHITE OLEDs : principle Anode ITO nm Cathode LUMO HOMO CuPc 10nm ETL NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm HIL HTL Blue Emitter Yellow Emitter Exciton diffusion + Förster transfer Exciton formation Yellow + Blue = White

CLEO ’06 – Long Beach (USA) 8 Influence of the total thickness Design of the OLEDs - part 1 Taking into account microcavity effects = locating the recombination zone at an antinode for blue and yellow eigenmodes ITO[150] CuPc[10] NPB[45.5] Ru[1] NPB[3.5] DPVBi[x] Alq 3 [10] Al[100] Balanced white Al mirror ITO/glass interface blue yellow

CLEO ’06 – Long Beach (USA) 9 Experimental determination of optimum thickness ETFOS © software 60 nm 140 nm 230 nm Etfos© software

CLEO ’06 – Long Beach (USA) 10 Influence of the rubrene thickness Design of the OLEDs - part 2 Variation of the rubrene thickness e [1-10 nm] NPB [50 nm] Ru [e nm] DPVBi + Ru [60 nm] [5 nm] [(55 – e) nm] Optimal Rubrene thickness : ~1 nm → « monolayer » 17 Å 7 Å Rubrene molecule 14 Å

CLEO ’06 – Long Beach (USA) 11 Anode ITO nm Cathode LUMO HOMO CuPc 10nm ETL NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm Energy HIL HTL Blue Emitter Yellow Emitter Possible explanations : 1 ) electrons are trapped when rubrene thickness e exceeds the monolayer width  poor e - /holes balance at the interface 2) Concentration Quenching of excitons in neat rubrene - Influence of the rubrene thickness e

CLEO ’06 – Long Beach (USA) 12 Influence of the rubrene position Design of the OLEDs - part 3 Variation of the rubrene position d [-10 ► +20 nm] NPB [50 nm] DPVBi [60 nm] ● d = Ru [1 nm] ▲ Variation of the OLED color from pure yellow (Rubrene) to pure blue (DPVBi) via white

CLEO ’06 – Long Beach (USA) 13 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = -10 nm Color SpectrumCIE x,yPerformances η ext = 3.4 % 1.2 lm/W 2275 Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 14 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = -5 nm Color SpectrumCIE x,yPerformances η ext = 1.7 % 0.9 lm/W 1700 cd/m² Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 15 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = -3.5 nm Color SpectrumCIE x,yPerformances η ext = 1.7 % 1.1 lm/W 1795 cd/A Variation of the rubrene position d [-10 ► +20 nm] Bright white : CIE coordinates x= 0.32 ; y=0.33 Color Rendering Index = 73

CLEO ’06 – Long Beach (USA) 16 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = -3 nm Color SpectrumCIE x,yPerformances η ext = 1.4 % 0.9 lm/W 1689 cd/m² Variation of the rubrene position d [-10 ► +20 nm] Anode Cathode

CLEO ’06 – Long Beach (USA) 17 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = 0 nm Color SpectrumCIE x,yPerformances η ext = 1.25 % 1.2 lm/W 1600 cd/m² Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 18 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = 5 nm Color SpectrumCIE x,yPerformances η ext = 2.6 % 2.5 lm/W 4067 cd/m² Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 19 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = 10 nm Color SpectrumCIE x,yPerformances η ext = 2 % 1 lm/W 1700 cd/m² Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 20 Influence of the rubrene position NPB [50 nm] DPVBi [60 nm] d = Ru [1 nm] ▲ d = 20 nm Color SpectrumCIE x,yPerformances η ext = 2.8 % 1.1 lm/W 1900 cd/A Anode Cathode Variation of the rubrene position d [-10 ► +20 nm]

CLEO ’06 – Long Beach (USA) 21 Anode Cathode CuPc 10nm NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm - Rubrene into NPB is better d = +20 nm x,y = (0.174 ; 0.151) η ext = 2.8 % d = -10 nm x,y = (0.172 ; 0.147) η ext = 3.4 % Anode Cathode CuPc 10nm NPB 50 nm DPVBi : Rubrène 60-e : e nm Alq 3 10nm LiF / Al 1.2 / 100nm - Rubrene in NPB : No hole trapping Rubrene in DPVBi : electron trapping Comparison of two BLUE diodes with identical CIE x,y :

CLEO ’06 – Long Beach (USA) 22 Influence of the rubrene position Estimation of the exciton diffusion length Simple exciton diffusion model : Peak rubrene intensity  exp(-d/L d ) ► Width of recombination zone ~ 15 nm

CLEO ’06 – Long Beach (USA) 23 Influence of the rubrene position Summary : NPB [50 nm] DPVBi [60 nm] ● d = Ru [1 nm] ▲

CLEO ’06 – Long Beach (USA) 24 Conclusion We show that we can finely control the OLED color by tuning the position and thickness of a thin layer of pure Rubrene in DPVBi We obtain very good WHITE Oled with CIE coordinates of (0.32 ; 0.33)and CRI > 70 Same kind of design with three colors (R, G, B) could pave the way toward full color control of OLED in a given chromatic gamut.

CLEO ’06 – Long Beach (USA) 25 Electrical characterization YELLOW OLED e=1nm d=0nm (DPVBi) BLUE OLED e=1 d=-10 (NPB) WHITE OLED e=1 d=-3.5 (NPB)