RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Path Vector Routing NETE0514 Presented by Dr.Apichan Kanjanavapastit.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram.
Spring Routing & Switching Umar Kalim Dept. of Communication Systems Engineering 04/05/2007.
Routing Algorithms and Routing in the Internet
14 – Inter/Intra-AS Routing
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
Feb 12, 2008CS573: Network Protocols and Standards1 Border Gateway Protocol (BGP) Network Protocols and Standards Winter
Routing in Wired Nets CS 215 W 01 - Mario Gerla. Routing Principles Routing: delivering a packet to its destination on the best possible path Routing.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
R OUTING IN THE INTERNET. A UTONOMOUS SYSTEM ( AS ) Collections of routers that has the same protocol, administative and technical control Intra-AS routing.
RSC Part II: Network Layer 3. IP addressing Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the.
Lecture 10 Overview. Border Gateway Protocol(BGP) De facto standard for Internet inter-AS routing allows subnet to advertise its existence to rest of.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
Network LayerII-1 RSC Part II: Network Layer 4. IP in operation Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
CSC 450/550 Part 4: Network Layer Part B: The Internet Routing Protocols.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
I-4 routing scalability Taekyoung Kwon Some slides are from Geoff Huston, Michalis Faloutsos, Paul Barford, Jim Kurose, Paul Francis, and Jennifer Rexford.
1 Computer Communication & Networks Lecture 22 Network Layer: Delivery, Forwarding, Routing (contd.)
Routing Algorithms. Network Layer4-2 Dynamic Routing r The routing table is updated using the routing protocols. When there is a change in the Internet.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Homework 4 r Out: Fri 2/27/2015 r In: Fri 3/13/2015.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
1 Mao W07 Interdomain Routing Broadcast routing EECS 489 Computer Networks Z. Morley Mao Monday Feb 12, 2007.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 5 TCP/IP Network Layer (3)
Internet Protocols. ICMP ICMP – Internet Control Message Protocol Each ICMP message is encapsulated in an IP packet – Treated like any other datagram,
4: Network Layer4b-1 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map.
Routing in the Inernet Outcomes: –What are routing protocols used for Intra-ASs Routing in the Internet? –The Working Principle of RIP and OSPF –What is.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Border Gateway Protocol. Intra-AS v.s. Inter-AS Intra-AS Inter-AS.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Routing in the Internet
14 – Inter/Intra-AS Routing
Chapter 4: Network Layer
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
Chapter 4: Network Layer
Part 4: Network Layer Part B: The Internet Routing Protocols
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Computer Networks Protocols
Network Layer: Internet Inter-Domain Routing
Presentation transcript:

RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book “Computer Networking: A Top Down Approach” generously made available by their authors (see copyright below). The slides have been adapted, where required, to the teaching needs of the subject above. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Network LayerII-2Network LayerII-2 RSC Part II: Network Layer r II. 1 Basic Network layer concepts r II.2 Introduction to IP m Datagram format m ICMP r II.3 IP addressing m Obtaining addresses, DHCP, NAT r II.4 IP in operation m ARP r II.5 Network routing m Link state m Distance Vector r II.6 Routing in the Internet m Hierarchical routing m RIP m OSPF m BGP

Network Layer4-3 OSPF (Open Shortest Path First) r “open”: publicly available r uses Link State algorithm m LS packet dissemination m topology map at each node m route computation using Dijkstra’s algorithm r OSPF advertisement carries one entry per neighbor router r advertisements disseminated to entire AS (via flooding) m carried in OSPF messages directly over IP (rather than TCP or UDP

Network Layer4-4 OSPF “advanced” features (not in RIP) r security: all OSPF messages authenticated (to prevent malicious intrusion) r multiple same-cost paths allowed (only one path in RIP) r For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) r integrated uni- and multicast support: m Multicast OSPF (MOSPF) uses same topology data base as OSPF r hierarchical OSPF in large domains.

Network Layer4-5 Hierarchical OSPF

Network Layer4-6 Hierarchical OSPF r two-level hierarchy: local area, backbone. m Link-state advertisements only in area m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. r area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. r backbone routers: run OSPF routing limited to backbone. r boundary routers: connect to other AS’s.

Network LayerII-7Network LayerII-7 RSC Part II: Network Layer r II. 1 Basic Network layer concepts r II.2 Introduction to IP m Datagram format m ICMP r II.3 IP addressing m Obtaining addresses, DHCP, NAT r II.4 IP in operation m ARP r II.5 Network routing m Link state m Distance Vector r II.6 Routing in the Internet m Hierarchical routing m RIP m OSPF m BGP

Network Layer4-8 Internet inter-AS routing: BGP r BGP (Border Gateway Protocol): the de facto standard r BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate reachability information to all AS- internal routers. 3. Determine “good” routes to subnets based on reachability information and policy. r allows subnet to advertise its existence to rest of Internet: “I am here”

Network Layer4-9 BGP basics r pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions m BGP sessions need not correspond to physical links. r when AS2 advertises a prefix to AS1: m AS2 promises it will forward datagrams towards that prefix. m AS2 can aggregate prefixes in its advertisement 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer4-10 Distributing reachability info r using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. m 1c can then use iBGP do distribute new prefix info to all routers in AS1 m 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session r when router learns of new prefix, it creates entry for prefix in its forwarding table. 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer4-11 Path attributes & BGP routes r advertised prefix includes BGP attributes. m prefix + attributes = “route” r two important attributes: m AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS 67, AS 17 m NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS) r when gateway router receives route advertisement, uses import policy to accept/decline.

Network Layer4-12 BGP route selection r router may learn about more than 1 route to some prefix. Router must select route. r elimination rules: 1. local preference value attribute: policy decision 2. shortest AS-PATH 3. closest NEXT-HOP router: hot potato routing 4. additional criteria

Network Layer4-13 BGP messages r BGP messages exchanged using TCP. r BGP messages: m OPEN: opens TCP connection to peer and authenticates sender m UPDATE: advertises new path (or withdraws old) m KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request m NOTIFICATION: reports errors in previous msg; also used to close connection

Network Layer4-14 BGP routing policy r A,B,C are provider networks r X,W,Y are customer (of provider networks) r X is dual-homed: attached to two networks m X does not want to route from B via X to C m.. so X will not advertise to B a route to C A B C W X Y legend : customer network: provider network

Network Layer4-15 BGP routing policy (2) r A advertises path AW to B r B advertises path BAW to X r Should B advertise path BAW to C? m No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers m B wants to force C to route to w via A m B wants to route only to/from its customers! A B C W X Y legend : customer network: provider network

Network Layer4-16 Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance