Discussion on applications and research projects.

Slides:



Advertisements
Similar presentations
6 th International Workshop on Tropical Cyclones Topic 4.1: Variability of Tropical Cyclone Activity/Intensity on Intraseasonal and Interannual Scales.
Advertisements

Sub-seasonal to Seasonal Prediction (1-90 days) -
Sub-seasonal to seasonal prediction David Anderson.
Annular Modes of Extra- tropical Circulation Judith Perlwitz CIRES-CDC, University of Colorado.
Analysis of Eastern Indian Ocean Cold and Warm Events: The air-sea interaction under the Indian monsoon background Qin Zhang RSIS, Climate Prediction Center,
Uganda’s climate: change and variability Prof Chris Reason, UCT & Lead Author, WG1 AR5 Regional circulation and climate Climate variability Long-term projections.
Potential Predictability and Extended Range Prediction of Monsoon ISO’s Prince K. Xavier Centre for Atmospheric and Oceanic Sciences Indian Institute of.
The Potential for Skill across the range of the Seamless-Weather Climate Prediction Problem Brian Hoskins Grantham Institute for Climate Change, Imperial.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP February 20, 2006.
Pei-Yu Chueh 2010/7/1.  From 1948 to 2005 for DJF found decreases over the Arctic, Antarctic and North Pacific, an increase over the subtropical North.
Review of Northern Winter 2010/11
Figures from: Baldwin, M.P., and T.J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, Fig. 1. Time-height.
Climate Impacts Discussion: What economic impacts does ENSO have? What can we say about ENSO and global climate change? Are there other phenomena similar.
Climate and Food Security Thank you to the Yaqui Valley and Indonesian Food Security Teams at Stanford 1.Seasonal Climate Forecasts 2.Natural cycles of.
Atmospheric Variability Why is it so cold winter ? Why was it so hot summer 2010? Why was it so dry in 2007? Why was it so wet in 1998, 2009 (fall)?
Exeter 1-3 December 2010 Monthly Forecasting with Ensembles Frédéric Vitart European Centre for Medium-Range Weather Forecasts.
Are Exceptionally Cold Vermont Winters Returning? Dr. Jay Shafer July 1, 2015 Lyndon State College 1.
CPC Forecasts: Current and Future Methods and Requirements Ed O’Lenic NOAA-NWS-Climate Prediction Center Camp Springs, Maryland ,
December 2002 Section 2 Past Changes in Climate. Global surface temperatures are rising Relative to average temperature.
Approaches to Seasonal Drought Prediction Bradfield Lyon CONAGUA Workshop Nov, 2014 Mexico City, Mexico.
International CLIVAR Working Group for Seasonal-to- Interannual Prediction (WGSIP) Ben Kirtman (Co-Chair WGSIP) George Mason University Center for Ocean-Land-Atmosphere.
ENSO Prediction and Policy Why Predict ENSO? How do we predict ENSO? Why is it possible ? What information do predictions offer? What to do with this information?
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP April 16, 2007.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP February 6, 2006.
Southern Hemisphere: Weather & Climate over Major Crops Areas Update prepared by Climate Prediction Center / NCEP 23 May 2011 For Real-time information:
Stratospheric harbingers of anomalous weather regimes. M.P. Baldwin and T.J Dunkerton Science, 294:581. Propagation of the Arctic Oscillation from.
R.Sutton RT4 coordinated experiments Rowan Sutton Centre for Global Atmospheric Modelling Department of Meteorology University of Reading.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP March 26, 2007.
Long-Term Changes in Northern and Southern Annular Modes Part I: Observations Christopher L. Castro AT 750.
How do Long-Term Changes in the Stratosphere Affect the Troposphere?
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP May 17, 2005.
Variations in the Activity of the Madden-Julian Oscillation:
Northern Hemisphere: Weather & Climate over Major Crop Areas Update prepared by Climate Prediction Center / NCEP 2 May 2011 For Real-time information:
1 Opposite phases of the Antarctic Oscillation and Relationships with Intraseasonal to Interannual Activity in the Tropics during the Austral Summer (submitted.
Modes of variability and teleconnections: Part II Hai Lin Meteorological Research Division, Environment Canada Advanced School and Workshop on S2S ICTP,
Extratropical Climate. Outline Mean state Dominant extratropical modes Pacific/North American Oscillation North Atlantic Oscillation Arctic Oscillation.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP March 12, 2007.
Sub-seasonal to seasonal Prediction Project. Background  Several operational centres are now producing sub-seasonal forecasts. There is a need to fill.
The Role of Tropical Waves in Tropical Cyclogenesis Frank, W. M., and P. E. Roundy 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP February 27, 2006.
ECMWF Training course 26/4/2006 DRD meeting, 2 July 2004 Frederic Vitart 1 Predictability on the Monthly Timescale Frederic Vitart ECMWF, Reading, UK.
Indo-Pacific Sea Surface Temperature Influences on Failed Consecutive Rainy Seasons over Eastern Africa** Andy Hoell 1 and Chris Funk 1,2 Contact:
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP April 3, 2006.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP April 5, 2005.
Winter Outlook for the Pacific Northwest: Winter 06/07 14 November 2006 Kirby Cook. NOAA/National Weather Service Acknowledgement: Climate Prediction Center.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP April 9, 2007.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP November 6, 2006.
© Crown copyright Met Office Predictability and systematic error growth in Met Office MJO predictions Ann Shelly, Nick Savage & Sean Milton, UK Met Office.
The impact of tropical convection and interference on the extratropical circulation Steven Feldstein and Michael Goss The Pennsylvania State University.
Climate Prediction Center Monitoring Products Dr. Gerald Bell Climate Prediction Center/ NOAA/ NWS National Centers for Environmental Prediction (NCEP)
NAME SWG th Annual NOAA Climate Diagnostics and Prediction Workshop State College, Pennsylvania Oct. 28, 2005.
Marcel Rodney McGill University Department of Oceanic and Atmospheric Sciences Supervisors: Dr. Hai Lin, Prof. Jacques Derome, Prof. Seok-Woo Son.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP July 31, 2006.
Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP September 19, 2005.
ESSL Holland, CCSM Workshop 0606 Predicting the Earth System Across Scales: Both Ways Summary:Rationale Approach and Current Focus Improved Simulation.
Dynamics of the African Heat Low on climate scale R. Roehrig, F. Chauvin, J.-P. Lafore Météo-France, CNRM-GAME ENSEMBLES RT3 Working Meeting 10 February.
Jon Gottschalck NOAA / NWS / Climate Prediction Center
Challenges of Seasonal Forecasting: El Niño, La Niña, and La Nada
Question 1 Given that the globe is warming, why does the DJF outlook favor below-average temperatures in the southeastern U. S.? Climate variability on.
Edwin Gerber (New York University)
The El Niño/ Southern Oscillation (ENSO) Cycle Lab
Why Should We Care About the Stratosphere?
Shuhua Li and Andrew W. Robertson
Prospects for Wintertime European Seasonal Prediction
Predictability assessment of climate predictions within the context
CLIMATE VARIABILITY IN EASTERN AFRICA; Its causes and relationship to ENSO By Z.K.K. Atheru AND C. Mutai Drought Monitoring Centre, Nairobi (DMCN) April.
Ongoing and Planned Activities in Sub-seasonal Forecasting at the NCEP
Global Observational Network and Data Sharing
Characteristics of 2018/2019 winter monsoon in Japan
Presentation transcript:

Discussion on applications and research projects

Applications activities, including sectors, lead times, and forecast tailoring. Use of selected case studies, such as floods, droughts, heat waves etc. Research activities, including calibration, multi-model ensembles, ensemble generation and spread, forecast intercomparisons, sources of predictability.... We need to be sure we are archiving all reasonable variables needed for applications. How should the use of the dataset for research and applications be promoted? Input from various centres has been sought. Outline

Applications Activities

Growing, and urgent, requirement for the employment of sub-seasonal predictions for a wide range of societal and economic applications which include: Warnings of the likelihood of severe high impact weather (droughts, flooding, wind storms etc.) to help protect life and property Humanitarian Planning and Response to disasters Agriculture particularly in developing countries e.g. wheat and rice production Disease planning/control e.g. malaria, dengue and meningitis River-flow for flood prediction, hydroelectric power generation and reservoir management for example

Weather and climate span a continuum of time scales, and forecast information with different lead times are relevant to different sorts of decisions and early-warning In agriculture, for example, a seasonal forecast might inform a crop-planting choice, while sub-monthly forecasts could help irrigation scheduling, pesticide/fertilizer application: both can make a cropping calendar dynamic. In situations where seasonal forecasts are already in use, sub-seasonal ones could be used as updates, such as for end-of-season crop yields. Sub-seasonal forecasts may play an especially important role where initial conditions and intraseasonal oscillation is strong, while seasonal predictability is weak, such as the Indian summer monsoon.

Distribution of risk and opportunity

Risk analysis Input supply management Farmer advisories Food security early warning, planning Trade planning, strategic imports Insurance evaluation, payout Insurance contract design APPLICATION The agricultural risk & planning calendar Time of year Uncertainty (e.g., RMSEP) seasonal forecast planting marketing harvest anthesis growing season EVENT J. Hansen et al. (IRI)

Rice-planting area in Indramayu, Java Start of planting changes from time to time, in planting season 97/98, start of planting delayed 1 month due to delay onset of rainfall, increasing drought risk for the second crop, except in La-Nina years Source: Boer et al. (2004) Rainfall (mm) Planting Area (ha) rice Fallow Cropping Pattern

Examples of Ongoing Applications Activities Environment Canada: Forecast of extreme agrometeorological indices across Canada. Right now, we are doing this with the 16-day ensemble forecasts. We plan to apply to the monthly system. Hydrometeorological forecast for the Great Lakes. It is run in an experimental mode. One component is to use the monthly ensemble forecast to force the hydrological model. ECMWF 3 European projects: SafeWind (wind ensemble forecasts for the energy sector). Medium-range focus, but interest in the sub-seasonal time scale. Applications in hydrology and real-time flood forecasting, using ECMWF monthly forecasting system, demonstrated useful skill. Also use TIGGE. Prediction of African rainfall and temperature for disease prevention (Malaria, Dengue, Yellow fever..) (QWECI). CAWCR/BoM: Prediction of heat waves, including understanding of the role of large-scale circulation as pre- cursor, ability forecast model to capture these larges scale drivers, and development of some experimental prediction products. Funded by an agricultural consortium.

UKMO: Predictability of the temporal distribution of rainfall through the seasons, with specific reference to Africa (e.g. season onset, cessation, risk of in-season dry spells). Currently seasonal system; preliminary look at this in the ECMWF monthly system. Frequency of daily temperature extremes & 'heatwaves' also of interest & rainfall extremes over Africa. Reservoir inflow forecast for Ghana, on seasonal timescale. Sudden stratospheric warmings also of interest for European winter cold spells. NCEP MJO & Global Tropical Hazard Prediction of consecutive days of extreme temperature Prediction of Blocking and circulation indices Prediction of Tropical storms and Atlantic Hurricanes Prediction of onset dates of various monsoon systems Prediction of Active/break phases of Indian monsoons Prediction of sudden stratospheric warming events JMA Heatwave and flood prediction on a sub-seasonal time scale

Data Needs for Applications Availability of long hindcast histories are needed to develop and test regression-based MOS and tailoring models, and for skill estimation which is critical to applications. Daily data is needed, especially for a few key variables including precipitation and near-surface temperature and windspeed. Issues of open data access to enable uptake

Research activities

Verification and inter-comparison of the sub-seasonal forecasting systems also comparing the skill with seasonal forecasting systems (at some centers have different type of initialization, different resolutions...) Multi-model combinations, Calibration Defining a metric for sub-seasonal forecasts Prediction and predictability of extreme events: summer heat waves, winter cold waves, flooding, tropical cyclones... Investigating sources of predictability, e.g.: impact of sea-ice, snow, soil moisture initial conditions on sub-seasonal predictions... impact of the MJO on extratropical circulation modulation of tropical cyclones by the MJO stratosphere-troposphere interaction

Processes that act as sources of ISI climate predictability extend over a wide range of timescales, and involve interactions among the atmosphere, ocean, and land. CCEW: convectively coupled equatorial waves (in the atmosphere); TIW: tropical instability wave (in the ocean); MJO/MISV: Madden-Julian Oscillation/Monsoon intraseasonal variability; NAM: Northern Hemisphere annular mode; SAM: Southern Hemisphere annular mode; AO: Arctic oscillation; NAO: North Atlantic oscillation; QBO: quasi-biennial oscillation, IOD/ZM: Indian Ocean dipole/zonal mode; AMOC: Atlantic meridional overturning circulation. For the y-axis, A indicates atmosphere; L indicates land; I indicates ice; and, O indicates ocean.

Example of the relationship among tropical outgoing long-wave radiation (OLR, left column), which is used to define the phase of the MJO, wintertime (JFM) 500-hPa geopotential height anomalies (middle column), and precipitation anomalies (right column). For example, Phase 5 (the middle row) of the MJO exhibits enhanced convection over the Maritime Continent that is accompanied by deep-troughing in the mid-troposphere over the North Pacific and enhanced precipitation in the Pacific Northwest. SOURCE: Adapted from Bond and Vecchi (2003).

from COMET training materials

Stratospheric impact on weather? Fig. 2. Composites of time-height development of the northern annular mode for (A) 18 weak vortex events and (B) 30 strong vortex events. The events are determined by the dates on which the 10-hPa annular mode values cross –3.0 and +1.5, respectively. The indices are nondimensional; the contour interval for the color shading is 0.25, and 0.5 for the white contours. Values between –0.25 and 0.25 are unshaded. The thin horizontal lines indicate the approximate boundary between the troposphere and the stratosphere. Baldwin & Dunkerton (2001)

Inertial memory due to soil moisture A positive soil moisture anomaly at the Atmospheric Radiation Measurement/Cloud and Radiation Testbed (ARM/CART) site in Oklahoma decreases with a time scale much longer than the atmospheric events that caused it. SOURCE: Greg Walker, personal communication. Soil moisture time scales measured at other sites are even longer than this (Vinnikov and Yeserkepova, 1991).

Areas for which the numerical models participating in the GLACE study tend to agree that variations in soil moisture exert some control on variations in precipitation. The variable plotted is the average across models of a land-atmosphere coupling strength diagnostic; the insets show how the magnitude of this diagnostic differs amongst the participating models. SOURCE: Koster et al. (2004).