Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical.

Slides:



Advertisements
Similar presentations
Relativistic equation of state at subnuclear densities in the Thomas- Fermi approximation Zhaowen Zhang Supervisor: H. Shen Nankai University 20th-22th.
Advertisements

Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Francesca Gulminelli & Adriana Raduta LPC Caen, FranceIFIN Bucharest, Romania Statistical description of PNS and supernova matter.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Stefan Rüster, Jürgen Schaffner-Bielich and Matthias Hempel Institut für theoretische Physik J. W. Goethe-Universität, Frankfurt International Workshop.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
1 Nuclear Physics 1 Section 11-1,2. 2 Electron Pressure From the total energy of a free electron gas we can calculate the electron pressure using.
Construct an EOS for use in astrophysics: neutron stars and supernovae wide parameter range: proton fraction Large charge asymmetry: thus investigation.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
Phase transitions in nuclei: from fission to multifragmentation and back F.Gulminelli – LPC Caen First multifragmentation models: ~1980 (L.Moretto, J.Randrup,
Wolfgang Cassing CERN, Properties of the sQGP at RHIC and LHC energies.
Stellar Structure Section 5: The Physics of Stellar Interiors Lecture 12 – Neutrino reactions Solar neutrinos Opacity processes: scattering, bb, bf, ff.
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Has the critical temperature of the QCD phase transition been measured ?
Open Problems in Nuclear Level Densities Alberto Ventura ENEA and INFN, Bologna, Italy INFN, Pisa, February 24-26, 2005.
P. Arumugam Centro de Física das Interacções Fundamentais and Departamento de Física, Instituto Superior Técnico, Lisbon, Portugal S.K. Patra, P.K. Sahu,
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Introduction to (Statistical) Thermodynamics
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
The Interior of Stars I Overview Hydrostatic Equilibrium
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Mary Beard University of Notre Dame Reaction Rates Calculations in Dense Stellar Matter Frontiers 2005 Aim: To establish a general reaction.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Properties of nuclear matter in supenova explosions Igor Mishustin Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University Frankfurt.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Complex Plasmas as a Model for the Quark-Gluon-Plasma Liquid
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt.
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
Deqing Fang, Yugang Ma, Shaoxin Li, Chenlong Zhou
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Microscopic Modeling of Supernova Matter Igor Mishustin FIAS, J. W. Goethe University, Frankfurt am Main, Germany and National Research Center “Kurchatov.
Quark-Gluon Plasma Sijbo-Jan Holtman.
Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.
Connection between THE LARGEST LYAPUNOV EXPONENT,DENSITIY FLUCTUATION AND MULTIFRAGMENTATION in EXCITED NUCLEAR SYSTEMS Yingxun Zhang (CIAE) Xizhen Wu.
Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.
Modeling of Clusterized Nuclear Matter under Stellar Conditions Igor Mishustin with T. Buervenich, C. Ebel, U Heinzmann, S. Schramm, W. Greiner FIAS, J.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
Break-up of nucleus Projectile Target Energy E* ~ few MeV/n < 1 MeV/n (p, α, π, heavy ions) Accelerators fraction of MeV/n to several GeV/n.
Nuclear Phenomenology 3C24 Nuclear and Particle Physics Tricia Vahle & Simon Dean (based on Lecture Notes from Ruben Saakyan) UCL.
Relativistic EOS for Supernova Simulations
Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Hartree-Fock Method W.G.Newton 1,2, Bao-An Li 1, J.R.Stone 2,3 1 Texas.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Nuclear Binding Energy
Structure and dynamics from the time-dependent Hartree-Fock model
EOS discussion.
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
Nuclear excitations in relativistic nuclear models
Parametrisation of Binding Energies
Symmetry energy with non-nucleonic degrees of freedom
Variational Calculation for the Equation of State
Tests of the Supernova Equation of State using Heavy Ion Collisions
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical Physics A statistical model for hot hadronic matter

Motivation Description of the model Results for -free matter Results for trapped ’s Summary & outlook Outline A statistical model for hot hadronic matter

Motivation Matthias Hempel Ladek Zdroj, February 27, 2008 EoS and composition at finite T is of interest for Supernovae, cooling or accreting NS, collisions between compact stars, (heavy ion collisions) … at present only two models available (Shen & Lattimer Swesty) focus on matter below saturation density (crust) and construct a model that describes the liquid-gas phase transition with a grand-canonical statistical ensemble sub-saturated matter important for e.g.: - SN dynamics (stall of the shock front) - cooling of NS directly accessible by heavy ion collisions in form of multifragmentation

Motivation present models describe the system by one representative nucleus / the ground state of the simulated cell  no thermal or chemical ensemble “single nucleus approximation” has little influence on the EoS; but significant effect on the composition possible composition & form of matter (one component plasma ↔ statistical ensemble) influences e.g.: - neutrino scattering - thermal conductivity Matthias Hempel Ladek Zdroj, February 27, 2008 [Burrows, A.; Lattimer, J. M.; 1984ApJ B ]

Hot Hadronic Matter – Assumptions nuclear statistical equilibrium (T ≥ 0.5 MeV) full grand-canonical ensemble -free charge neutrality: n e = n p  -equilibrium:  e   B  p matter described by (T, n B ) trapped ’s charge neutrality: n e = n p no  -equilibrium / finite chemical potential:  e     B  p described by (T, n B, Y p ) Matthias Hempel Ladek Zdroj, February 27, 2008

nuclei (A ≥ 2)T, n B, Y p  A 1, Z 1 A 3, Z 3 A 2, Z 2 Matthias Hempel Ladek Zdroj, February 27, 2008 Hot Hadronic Matter– Ingredients

p n n n a A 1, Z 1 A 3, Z 3 A 2, Z 2 nuclei (A ≥ 2) nucleons Matthias Hempel Ladek Zdroj, February 27, 2008 Hot Hadronic Matter– Ingredients T, n B, Y p

nuclei (A ≥ 2) nucleons electrons & positrons p n n n a A 1, Z 1 A 3, Z 3 A 2, Z 2 e-e- e+e+ Matthias Hempel Ladek Zdroj, February 27, 2008 Hot Hadronic Matter– Ingredients T, n B, Y p

nuclei (A ≥ 2) nucleons electrons & positrons photons p n n n a A 1, Z 1 A 3, Z 3 A 2, Z 2 e-e- e+e+ Matthias Hempel Ladek Zdroj, February 27, 2008 Hot Hadronic Matter– Ingredients  T, n B, Y p

nuclei (A ≥ 2) nucleons electrons & positrons photons Matthias Hempel Ladek Zdroj, February 27, 2008 Hot Hadronic Matter– Ingredients

Nuclei if available experimental data of Audi, Wapstra and Thibault (2003): binding energies of over 2000 precisely measured nuclei Matthias Hempel Ladek Zdroj, February 27, 2008  direct use of experimental data for the construction of the EoS

Nuclei experimentally unknown nuclei: mass table generated with theoretical nuclear model Matthias Hempel Ladek Zdroj, February 27, 2008

standard relativistic mean-field description parameter-set TMA with mass number-dependent coupling constants BCS  -force pairing axial deformations  rms (AW)~2.1 MeV but: neglect of temperature and medium effects [Geng, L.; Toki, H.; Meng, J.; 2005PThPh G] Nuclei – Theoretical Nuclear Model Matthias Hempel Ladek Zdroj, February 27, 2008

Maxwell-Boltzmann gas for every nucleus (A i,Z i ) classical, non-relativistic Boltzmann description always adequate chemical potential: number density: empirical formula for level density Nuclei – Thermodynamics Matthias Hempel Ladek Zdroj, February 27, 2008 [Fai, G.; Randrup, J.; 1982NuclPhysA ]

Nuclei – Coulomb Energies Wigner-Seitz approximation included as corrections to the nuclear masses: A i, Z i RiRi R WS e-e- e+e+ Matthias Hempel Ladek Zdroj, February 27, 2008 only valid if  : but if  ideal gas limit achieved

Nucleons free Fermi-gas at finite T (high accurate Fermi-Dirac integration routine) Matthias Hempel Ladek Zdroj, February 27, 2008 same relativistic mean-field description as for nuclei (at finite T) nuclear matter properties: [Gong, Z. et al.; 2001CoPhC G ]

Thermodynamics finite size of baryons  excluded volume principle  P, s corrected in the same manner thermodynamic inconsistent due to neglect of derivative terms [Kouno, H.; Takagi, F.; 1989ZPhysC ] Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition neutron drip n B (ND) = 2x10 -4 fm - ³ ~ n B 0 (ND) = 2.7x10 -4 fm - ³ mass fractions Matthias Hempel Ladek Zdroj, February 27, 2008

full T=0 calculations with explicit lattice energy reproduced (smoothed) unexpected decreasing at large density (limited mass table) spread at transition points average mass number and standard deviation  Results – -free – Composition Matthias Hempel Ladek Zdroj, February 27, 2008 [Rüster, S. B.; H. M.; Schaffner-Bielich, J.; 2006PhRvC..73c5804R ]

Results – -free – Composition nuclide distribution (mass fractions) smeared out transition from nucleus 66 Ni to 86 Kr can not be reproduced by one representative nucleus Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition nuclide distribution temperature effects decrease neutrons begin to appear Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition mass fractions Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition mass fractions nuclei dissolve into , p & n at low density Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition nuclide distribution T=0 path still observable thermal energy larger than differences in the chemical potentials of different nuclei  broad distribution Matthias Hempel Ladek Zdroj, February 27, 2008

Results – -free – Composition nuclide distribution Matthias Hempel Ladek Zdroj, February 27, 2008 transition from neutron magic number 50 to 82  broad distribution with two maxima

Results – -free – EoS T=0 case reproduced  important benchmark up to n B ~ fm -3 softening above ND due to free n P and  at small densities and large T generated by the electron positron plasma Matthias Hempel Ladek Zdroj, February 27, 2008

Results – trapped ’s – EoS good agreement 1st order phase transition; due to limited mass table (?) [Lattimer, J.; Swesty, F.; 1991NuclPhysA ] Matthias Hempel Ladek Zdroj, February 27, 2008

Results – trapped ’s – EoS good agreement for low T, but bumps from shell effects differences at large T Matthias Hempel Ladek Zdroj, February 27, 2008 [Shen, H. et al.; 1998NuPhA S ]

Results – trapped ’s – Composition average mass number strong shell effects huge differences at large densities Matthias Hempel Ladek Zdroj, February 27, 2008

mass fractions Matthias Hempel Ladek Zdroj, February 27, 2008 Results – trapped ’s – Composition nuclei and  ’s only at largest densities

average neutron number Neutrino cross-sections /  Matthias Hempel Ladek Zdroj, February 27, 2008 Results – trapped ’s – Composition

average of squared neutron number Matthias Hempel Ladek Zdroj, February 27, 2008 Neutrino cross-sections /  big effect coming only from the distribution Results – trapped ’s – Composition

nuclide distribution Matthias Hempel Ladek Zdroj, February 27, 2008 Results – trapped ’s – Composition

nuclide distribution almost all nuclei of the nuclear chart populated Matthias Hempel Ladek Zdroj, February 27, 2008 Results – trapped ’s – Composition

nuclide distribution almost all nuclei of the nuclear chart populated importance of statistical treatment Matthias Hempel Ladek Zdroj, February 27, 2008 Results – trapped ’s – Composition

Summary Statistical model for the EoS and composition at finite T: grand canonical ensemble consisting of an ideal gas of nuclei (vacuum masses at T=0) and nucleons (RMF) empirical formula for level densities Coulomb energies included in Wigner-Seitz approximation as effective masses excluded volume corrections for baryons Results: T=0 results reproduced consistent with existing EoSs, 1st order phase transition big differences in the composition, shell effects Matthias Hempel Ladek Zdroj, February 27, 2008

Outlook extension of nuclear mass table investigate nuclear level density / temperature dependence of BE investigate role of the excluded volume corrections investigate Coulomb energies inclusion of medium effects on the nuclear binding energies Matthias Hempel Ladek Zdroj, February 27, 2008

Outlook – Density Dependence of BE full RMF calculation with fixed external neutron density by Thomas Bürvenich (Frankfurt, FIAS) Matthias Hempel Ladek Zdroj, February 27, 2008 simple quadratic behaviour (?) extension of the Bethe- Weizsäcker mass formula preliminary

Outlook extension of nuclear mass table investigate nuclear level density / temperature dependence of BE investigate role of the excluded volume corrections investigate Coulomb energies inclusion of medium effects on the nuclear binding energies study different theoretical nuclear models (other parameter sets & mass tables, Skyrme-HF) use more realistic low density homogenous nuclear matter EoS  generate a full (n B, Y p, T) EoS table Matthias Hempel Ladek Zdroj, February 27, 2008