Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University.

Slides:



Advertisements
Similar presentations
Quantum optical effects with pulsed lasers
Advertisements

Femtosecond lasers István Robel
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Optical sources Lecture 5.
Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information.
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
In Search of the “Absolute” Optical Phase
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Entanglement and Bell’s Inequalities
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
Presented By: Gaurav C Josan Department - EE NON-LINEAR OPTICS NON LINEAR OPTICS.
TeraHertz Kerr effect in GaP crystal
Generation of short pulses
Single Shot Combined Time Frequency Four Wave Mixing Andrey Shalit, Yuri Paskover and Yehiam Prior Department of Chemical Physics Weizmann Institute of.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Introduction to Nonlinear Optics
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.
Introduction to Nonlinear Optics H. R. Khalesifard Institute for Advanced Studies in Basic Sciences
Quantum and Classical Coincidence Imaging and Interference
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Ultrafast Spectroscopy
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
Properties of ElectroMagnetic Radiation (Light)
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Analysis of Phase Noise in a fiber-optic link
Light and Optics. Unit 8: Light and Optics Chapter 23: The Physical Nature of Light 23.1 Electromagnetic Spectrum 23.2 Interference, Diffraction, and.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
Light Propagation in Photorefractive Polymers
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
1 Characterizing Photonic Spatial States Sebastião Pádua Physics Department - Federal University of Minas Gerais – Belo Horizonte - Brazil Paraty 2009,
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Femto-second Measurements of Semiconductor Laser Diodes David Baxter
Yaakov Shaked, Roey Pomeranz and Avi Pe’er Department of Physics and BINA Center for Nano-technology, Bar-Ilan University, Ramat-Gan 52900, Israel
Generation and detection of ultrabroadband terahertz radiation
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Spectrophotometry.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Quantum Imaging with Undetected Photons
Unit 12: Part 1 Physical Optics: The Wave Nature of Light.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Under the Influence of Spectral Entanglement: Polarization-Entanglement Swapping and Fusion Gates Travis Humble * and Warren Grice, Oak Ridge National.
Measuring the Wave-Function of Broadband Bi-Photons
Quantum Imaging Yanhua Shih, Morton H. Rubin, and Fow-Sen Choa University of Maryland Baltimore County Baltimore, MD
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
An introduction to Spectrometric Methods. Spectroscopy Definition Spectroscopy is a general term for the science that deal with the interactions of various.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
Taylor’s experiment (1909) slit needle diffraction pattern f(y) film Proceedings of the Cambridge philosophical society (1909)
§8.4 SHG Inside the Laser Resonator
Calibration of single-photon detectors from spontaneous parametric down-conversion Justin Ripley Columbia University, New York, NY Fermi National Accelerator.
ENTANGLED BRIGHT SQUEEZED VACUUM
Quantum Lithography Presented at SPIE, August 14th, 2006
Spontaneous Parametric Down Conversion
Principle of Mode Locking
Quantum Information with Continuous Variables
Stabilizing the Carrier-Envelope Phase of the Kansas Light Source
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Fiber Laser Part 1.
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Optical-phase conjugation in difference-frequency generation
Presentation transcript:

Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University ?

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Outline  Introduction | OPA and SPDC Light is … Light-matter interaction Frequency conversion SHG and SPDC SPDC  OPA OPA is …? Why OPA? Why SPDC?

Introduction Light gamma-ray X-ray Ultraviolet visible infrared radio wave => Electro-magnetic wave

Introduction Light-matter interaction Electric field make dielectric polarization Emission from dipole oscillating in vertical direction E : exp(-i  t) E*E : exp(-i2  t) Second harmonic generation (SHG) using a non-linear crystal within some limitation from physical law…

Introduction energy / momentum conservation in frequency mixing k2,k2, k1,k1, BBO crystal  -BaB 2 O 4

Introduction Reversible?YES! Reverse process spontaneous parametric down conversion (SPDC) 2=>1+1 2=> =>1+1 occur by itself

Introduction How does SPDC occur? similar as OPA (optical parametric amplification) …what is OPA? process | difference frequency generation h pump -h signal =h idler Energy conservation h pump =h signal +h idler Signal (amplified) pump idler seed | w/o amp pump seed signal | amplified

Introduction How does SPDC occur? similar as OPA (optical parametric amplification) process | difference frequency generation h pump -h signal =h idler Energy conservation h pump =h signal +h idler #signal=#idler signal pump idler SPDC starts with vacuum noise (no seed for signal) quite low efficiency ~10 -10

Introduction Why OPA? complicated setup intense laser at different wavelength non-linear spectroscopy in UV/visible/IR… (ultrafast spectroscopy, Raman for vibration study, …) Other method? self phase modulation (SPM) | low efficiency

Why SPDC? low conversion efficiency interesting character of entanglement never broken security | quantum communication easy to transfer | via optical fiber Other method? singlet (a pair of spin ½ particle) Introduction

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Application | classical Broadband generation | for short pulse Shorter pulse needs broader spectrum

non- degenerate Application | classical Optical parametric amplifier (OPA)Non-collinear OPA (NOPA) Broadband generation | for short pulse

Application | classical Broadband generation | for short pulse WLC OPA (OPG with WLC) Spectrum diffracted by grating Visible broadband pulse width=~9fs

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Application | quantum SPDC generates photon pairs (low efficiency) (2) frequency :   p =   s +   i (1) wave vector : k p = k s + k i correlated parameters (in case of Type-II crystal) (3) polarization :  p, k p  s, k s  i, k i NLC

Application | quantum So, what is entanglement? Let’s remind “Young’s double slit” photon comes one by one if you block one of the slits… Are there any other entanglements? Interference only in unknown case path entanglement Interference of “probability”, “wavefunction” different from statistics of classical phenomena=quantum Yes, we will see them in the following pages!

quantum lithography | wave vector better resolution ( than classical limit ) ~ p =  “SPDC photon pairs” v.s. “classical light” Schematic set-up Y. Shih, J. Mod. Opt. 49, 2275 (2002) Application | quantum (Young’s : ) half!

Experimental result (quantum lithograph) quantum classical

Application | quantum ghost imaging | wave vector coincidence count CC1 CC2 CC3 CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO

Application | quantum ghost imaging | wave vector CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO coincidence count CC1 CC2 CC3

 p, k p  s, k s  i, k i NLC Y. Shih, J. Mod. Opt. 49, 2275 (2002) ghost imaging measure the shape of an object Detector does NOT scan after object classical Application | quantum

ghost spectroscopy | frequency Application | quantum CC1 CC2 CC3 BBO coincidence count CC1 CC2 CC3 CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO

CC1 CC2 CC3 BBO ghost spectroscopy | frequency Application | quantum coincidence count CC1 CC2 CC3 CC1 CC2 CC3 BBO CC1 CC2 CC3 BBO

S : sample (Nd +3 -doped glass) experiment setup L1 : focusing lens (f=100mm, 8mm) BBO : non-linear crystal M1 : parabolic mirror M2,3 : plane mirror P1 : prism (remove pump) P2 : prism (compensate angular dispersion) PBS : polarizing beam splitter G : diffraction grating L2,3 : fiber coupling lens OF : optical fiber SPCM : single photon counting module TAC : time-to-amplitude converter Delay : delay module PC : computer

pump focusing lens (f=100mm) Spectrum of photon pairs and absorption spectrum of the sample more absorption in longer wavelength 1. Broadband photon pairs

result : absorption spectrum → agree with the result by a spectrometer calculate absorption spectrum from the ratio 1. Broadband photon pairs

result : absorption spectrum agree with the result by a spectrometer 1. Broadband photon pairs

summary of this section spherical lens → objective lens (f=100 → 8mm) spectrum was broadened (11,11→63,69nm) Nd 3+ -doped glass ( in the idler light path) → absorption spectrum was measured without resolving the frequency of photon transmitted through the sample fit well with the result measured by a spectrometer spectrum of SPDC photon pairs coincidence resolving signal light’s frequency A. Yabushita et. al., Phys. Rev. A 69, (2004) 1. Broadband photon pairs

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Application | quantum Outline for “Quantum Key Distribution (QKD)”  BB84 protocol | single photon how it works can it be safe?  E91 protocol | polarization entangled photon pair polarization entanglement? how it works can it be safe?

01 +  Application | quantum  BB84 protocol | single photon Purpose : to share a secret key how it works? key at random base at random+  +  + + base at random   + + 

01 +  Application | quantum  BB84 protocol | single photon Purpose : to share a secret key how it works? key at random base at random+  +  + + base at random   + +  % of keys can be shared (shared keys are same) complicated…But secure! How can it be secure??

01 +  Application | quantum  BB84 protocol | single photon Can it be secure? key at random base at random+  +  + + base at random   + +  base?(random try)+    + 

 BB84 protocol | single photon Can it be secure? key at random base at random+  +  + + base at random   + +   Application | quantum base?(random try)+    +  Error! Security can be checked!

EPR-Bell source Alice Bob polarization-entangled photon pairs 1. Broadband photon pairs

HV and VH (50%-50%) Alice Bob Mixed state (statistical mixture) 1. Broadband photon pairs ? ?

EPR-pair QKD example (without Eve) Base select Base select Alice Bob H V HV …… If they use the same base, “100%” correlation (quantum key distributed!) RL RL HV 11 H V 00

EPR-pair QKD example (with Eve) Base select Base select Alice Bob H 0 V V 1 H … … V H H V … ? Eve also share the key (NOT secure QKD…) How can it be improved? VH 1 H V 0 V H 0 1 H V … 1 0

EPR-pair Ekert91 protocol Base select Base select Alice Bob H V 00 L R 00 V R 0 0 V L 0 1 H L 1 1 VH 1 1 LR 11 HR 01 Base information (classical communication) “100%” correlation

EPR-pair Ekert91 protocol Base select Base select Alice Bob V 0 L 0 R 0 V 0 H 1 H 1 L 0 R 1 L 1 V V 1 H H 0 V L 1 H H 0 R R 0 L R 0 LV 1 R V H V H R L L R Base information OK NG! Bob can detect Eve (secure!)

T. Jennewein et. Al., PRL 84, 4729 (2000) Experimental example of QKD

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Generation of photon pairs entangled in their frequencies and polarizations (for WDM-QKD) BBO (type-II) 22   frequency-entangled e o/e e/o polarization-entangled polarization-entangled pair at many wavelength combinations light source for WDM-QKD

e polarization-entangled e o/e polarization-entangled o/e Standard : Multiplex :

experimental setup L1 : focusing lens BBO : non-linear crystal M1 : parabolic mirror M2,3 : plane mirror P1 : prism (remove pump) P2 : prism (compensate angular dispersion) G : diffraction grating L2,3 : fiber coupling lens OF : optical fiber SPCM : single photon counting module TAC : time-to-amplitude converter Delay : delay module PC : computer IRIS : iris diaphragms POL1,2 : linear polarizer BS : non-polarizing beam splitter

simulation f=1  =0 o f=1  =60 o f=1  =180 o f=1.732  =0 o 0o0o 90 o 135 o 45 o 0o0o 90 o 135 o 45 o 0o0o 90 o 135 o 45 o 0o0o 90 o 135 o 45 o 1. Broadband photon pairs

polarization correlation (1 st phase shift (866nm) < phase shift (870nm) visibility < 100% 0o0o 45 o 90 o 135 o 1. Broadband photon pairs

polarization correlation (1 st phase shift (866nm) < phase shift (870nm) visibility<100% visibilityrelative phase 0o0o o o 135 o o 90 o o 0o0o 45 o 90 o 135 o

entangled ( iris 1mm ) phase shift (866nm) < phase shift (870nm) visibility<100% (866nm, 870nm) no entanglement ( iris open ) to improve : group velocity compensation but phase shift<45 o to improve : walk-off compensation frequency resolved photon pairs are entangled in polarization (light source for WDM-QKD) future : compensations of walk-off and group velocity (improve pol- entanglement) A. Yabushita et. al, J. Appl. Phys., 99, (2006)

Our work Outline  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam  Conclusion

Beam-like polarization entangled photon pair generation 羅信斌 (Hsin-Pin Lo) Department of Physics, NTHU 先 進 超 快 雷 射 研 究 中 心先 進 超 快 雷 射 研 究 中 心 超 快 動 力 學 研 究 室超 快 動 力 學 研 究 室

Acknowledgement 籔下篤史 (Prof. A. Yabushita) 羅志偉 (Prof. C. W. Luo) 陳柏中 (Prof. P. C. Chen ) Department of Electrophysics, National Chiao Tung University Department of Physics, Nation Tsing Hua University 先 進 超 快 雷 射 研 究 中 心先 進 超 快 雷 射 研 究 中 心 超 快 動 力 學 研 究 室超 快 動 力 學 研 究 室 小林孝嘉 (Prof. T. Kobayashi ) Department of Applied Physics and Chemistry and Institute for Laser Science The University of Electro-Communications, Tokyo, Japan

SPDC photon image Polarization Entangled photon pair H: Horizontal V: vertical Beam-like photon pair Crystal optic axis

Generation rate ~ 32,000 s -1 H H V V

Main idea and experiment setup L1=L2=L3  H1H1 V1V1 V2V2 H2H2 QWP L1 L2 L3 SPCM Coincidence measurement H1H1 V1V1 V2V2 H2H2

PRL 90, (2003) 2 by 2 fiber

HOM interference measurement QWP HWP Pol. L1 L3

Our work  Introduction  Optical parametric processes  Opt. param. amplifier (OPA)  Spontaneous param. down conv. (SPDC)  Application | classical  Broadband generation | for short pulse  Application | quantum  Entangled photon pairs  Ghost imaging | wave vector  Ghost spectroscopy | frequency  Quantum key distribution (QKD) | polarization  Multiplex QKD | polarization and frequency  Entangled photon beam Summary

Thank you for your attention!