University of Washington Today Memory layout Buffer overflow, worms, and viruses 1.

Slides:



Advertisements
Similar presentations
Buffer Overflows Nick Feamster CS 6262 Spring 2009 (credit to Vitaly S. from UT for slides)
Advertisements

CSc 352 Programming Hygiene Saumya Debray Dept. of Computer Science The University of Arizona, Tucson
Machine-Level Programming V: Miscellaneous Topics Topics Buffer Overflow Linux Memory Layout Understanding Pointers Floating-Point Code CS 105 Tour of.
Today C operators and their precedence Memory layout
Carnegie Mellon 1 Machine-Level Programming V: Advanced Topics : Introduction to Computer Systems 8 th Lecture, Sep. 16, 2010 Instructors: Randy.
Machine-Level Programming V: Miscellaneous Topics Sept. 24, 2002 Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code.
Machine-Level Programming V: Miscellaneous Topics Topics Linux Memory Layout Buffer Overflow Floating Point Code CS213.
– 1 – EECS213, S’08 Alignment Aligned Data Primitive data type requires K bytes Address must be multiple of K Required on some machines; advised on IA32.
Assembly תרגול 8 פונקציות והתקפת buffer.. Procedures (Functions) A procedure call involves passing both data and control from one part of the code to.
Fabián E. Bustamante, Spring 2007 Machine-Level Prog. V – Miscellaneous Topics Today Buffer overflow Floating point code Next time Memory.
University of Washington CSE 351 : The Hardware/Software Interface Section 5 Structs as parameters, buffer overflows, and lab 3.
Introduction to x86 Assembly or “How does someone hack my laptop?”
Security Exploiting Overflows. Introduction r See the following link for more info: operating-systems-and-applications-in-
Machine Programming – IA32 memory layout and buffer overflow CENG331: Introduction to Computer Systems 7 th Lecture Instructor: Erol Sahin Acknowledgement:
Carnegie Mellon 1 This week Buffer Overflow  Vulnerability  Protection.
1 UCR Common Software Attacks EE 260: Architecture/Hardware Support for Security Slide credits: some slides from Dave O’halloran, Lujo Bauer (CMU) and.
Fall 2008CS 334: Computer SecuritySlide #1 Smashing The Stack A detailed look at buffer overflows as described in Smashing the Stack for Fun and Profit.
Functions & Activation Records Recursion
Carnegie Mellon Introduction to Computer Systems /18-243, spring th Lecture, Feb. 12 th Instructors: Gregory Kesden and Markus Püschel.
IA32 Linux Memory Layout Stack Heap Data Text not drawn to scale FF
Buffer Overflow Computer Organization II 1 © McQuain Buffer Overflows Many of the following slides are based on those from Complete Powerpoint.
Computer Security  x86 assembly  How did it go?  IceCTF  Lock picking  Survey to be sent out about lock picking sets  Bomblab  Nice job!
III:1 X86 Assembly – Buffer Overflow. III:2 Administrivia HW3 – skip the farmer game portion, moved to HW5  Due today HW4 – Endian swap in ASM and C.
Machine-Level Programming V: Miscellaneous Topics Topics Buffer Overflow Floating Point Code.
1 Machine-Level Programming V: Advanced Topics Andrew Case Slides adapted from Jinyang Li, Randy Bryant & Dave O’Hallaron.
Ithaca College 1 Machine-Level Programming IX Memory & buffer overflow Comp 21000: Introduction to Computer Systems & Assembly Lang Systems book chapter.
University of Washington Today Happy Monday! HW2 due, how is Lab 3 going? Today we’ll go over:  Address space layout  Input buffers on the stack  Overflowing.
Smashing the Stack Overview The Stack Region Buffer Overflow
Buffer Overflows Many of the following slides are based on those from
Overflows & Exploits. In the beginning 11/02/1988 Robert Morris, Jr., a graduate student in Computer Science at Cornell, wrote an experimental, self-replicating,
Machine-Level Programming V: Miscellaneous Topics
Carnegie Mellon 1 Odds and Ends Intro to x86-64 Memory Layout.
1 Understanding Pointers Buffer Overflow. 2 Outline Understanding Pointers Buffer Overflow Suggested reading –Chap 3.10, 3.12.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming V: Buffer overflow Slides.
Machine-Level Programming V: Advanced Topics
Information Security - 2. A Stack Frame. Pushed to stack on function CALL The return address is copied to the CPU Instruction Pointer when the function.
Machine-Level Programming Advanced Topics Topics Linux Memory Layout Buffer Overflow.
Machine-Level Programming V: Miscellaneous Topics Feb 10, 2004 Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code class09.ppt.
Machine-Level Programming V: Miscellaneous Topics
CS 3214 Computer Systems Godmar Back Lecture 7. Announcements Stay tuned for Project 2 & Exercise 4 Project 1 due Sep 16 Auto-fail rule 1: –Need at least.
Machine-Level Programming V: Miscellaneous Topics Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating-Point Code CS 105 Tour of.
Machine-Level Programming Advanced Topics Topics Linux Memory Layout Understanding Pointers Buffer Overflow.
Machine-Level Programming V: Miscellaneous Topics Feb 6, 2003 Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code class09.ppt.
@Yuan Xue Worm Attack Yuan Xue Fall 2012.
Machine-Level Programming V: Miscellaneous Topics Topics Buffer Overflow Floating Point Code class09.ppt.
Machine-Level Programming Advanced Topics Topics Buffer Overflow.
Carnegie Mellon 1 Machine-Level Programming V: Advanced Topics / : Introduction to Computer Systems 9 th Lecture, Sep. 25, 2012 Instructors:
1 Binghamton University Machine-Level Programming V: Advanced Topics CS220: Computer Systems II.
Carnegie Mellon 1 Machine-Level Programming V: Advanced Topics Slides courtesy of: Randy Bryant & Dave O’Hallaron.
Buffer Overflow Buffer overflows are possible because C doesn’t check array boundaries Buffer overflows are dangerous because buffers for user input are.
Machine-Level Programming V: Buffer overflow
Instructor: Fatma CORUT ERGİN
The Hardware/Software Interface CSE351 Winter 2013
Machine-Level Programming V: Miscellaneous Topics
Machine-Level Programming V: Miscellaneous Topics
Machine Language V: Miscellaneous Topics Sept. 25, 2001
Instructors: Gregory Kesden
Machine-Level Programming V: Miscellaneous Topics
Buffer overflows Buffer overflows are possible because C does not check array boundaries Buffer overflows are dangerous because buffers for user input.
Machine-Level Programming X Memory & buffer overflow Comp 21000: Introduction to Computer Systems & Assembly Lang Systems book chapter 3* * Modified.
Buffer Overflows CSE 351 Autumn 2016
Machine-Level Programming V: Advanced Topics
Machine Level Representation of Programs (IV)
Machine-Level Programming V: Miscellaneous Topics
Machine-Level Programming V: Miscellaneous Topics October 2, 2008
Buffer Overflows CSE 351 Autumn 2018
Machine-Level Programming V: Advanced Topics
Instructors: Majd Sakr and Khaled Harras
Machine-Level Programming X Memory & buffer overflow Comp 21000: Introduction to Computer Systems & Assembly Lang Systems book chapter 3* * Modified.
Machine-Level Programming V: Miscellaneous Topics
Presentation transcript:

University of Washington Today Memory layout Buffer overflow, worms, and viruses 1

University of Washington IA32 Linux Memory Layout Stack  Runtime stack (8MB limit) Heap  Dynamically allocated storage  When call malloc(), calloc(), new() Data  Statically allocated data  E.g., arrays & strings declared in code Text  Executable machine instructions  Read-only Upper 2 hex digits = 8 bits of address FF 00 Stack Text Data Heap 08 8MB not drawn to scale 2

University of Washington Memory Allocation Example char big_array[1<<24]; /* 16 MB */ char huge_array[1<<28]; /* 256 MB */ int beyond; char *p1, *p2, *p3, *p4; int useless() { return 0; } int main() { p1 = malloc(1 <<28); /* 256 MB */ p2 = malloc(1 << 8); /* 256 B */ p3 = malloc(1 <<28); /* 256 MB */ p4 = malloc(1 << 8); /* 256 B */ /* Some print statements... */ } FF 00 Stack Text Data Heap 08 not drawn to scale Where does everything go? 3

University of Washington IA32 Example Addresses $esp0xffffbcd0 p3 0x p1 0x p40x1904a110 p20x1904a008 &p20x beyond 0x big_array 0x huge_array 0x main()0x080483c6 useless() 0x final malloc()0x006be166 address range ~2 32 FF 00 Stack Text Data Heap not drawn to scale malloc() is dynamically linked address determined at runtime 4

University of Washington Internet Worm November, 1988  Internet Worm attacks thousands of Internet hosts.  How did it happen? 5

University of Washington Internet Worm November, 1988  Internet Worm attacks thousands of Internet hosts.  How did it happen? The Internet Worm was based on stack buffer overflow exploits!  many Unix functions do not check argument sizes  allows target buffers to overflow 6

University of Washington String Library Code Implementation of Unix function gets()  Anything interesting? /* Get string from stdin */ char *gets(char *dest) { int c = getchar(); char *p = dest; while (c != EOF && c != '\n') { *p++ = c; c = getchar(); } *p = '\0'; return dest; } 7

University of Washington String Library Code Implementation of Unix function gets()  No way to specify limit on number of characters to read Similar problems with other Unix functions  strcpy : Copies string of arbitrary length  scanf, fscanf, sscanf, when given %s conversion specification /* Get string from stdin */ char *gets(char *dest) { int c = getchar(); char *p = dest; while (c != EOF && c != '\n') { *p++ = c; c = getchar(); } *p = '\0'; return dest; } 8

University of Washington Vulnerable Buffer Code int main() { printf("Type a string:"); echo(); return 0; } /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); } unix>./bufdemo Type a string: unix>./bufdemo Type a string: Segmentation Fault unix>./bufdemo Type a string: ABC Segmentation Fault 9

University of Washington Buffer Overflow Disassembly f0 : 80484f0:55 push %ebp 80484f1:89 e5 mov %esp,%ebp 80484f3:53 push %ebx 80484f4:8d 5d f8 lea 0xfffffff8(%ebp),%ebx 80484f7:83 ec 14 sub $0x14,%esp 80484fa:89 1c 24 mov %ebx,(%esp) 80484fd:e8 ae ff ff ff call 80484b :89 1c 24 mov %ebx,(%esp) :e8 8a fe ff ff call a:83 c4 14 add $0x14,%esp d:5b pop %ebx e:c9 leave f:c3 ret 80485f2:e8 f9 fe ff ff call 80484f f7:8b 5d fc mov 0xfffffffc(%ebp),%ebx 80485fa:c9 leave 80485fb:31 c0 xor %eax,%eax 80485fd:c3 ret 10

University of Washington Buffer Overflow Stack echo: pushl %ebp# Save %ebp on stack movl %esp, %ebp pushl %ebx# Save %ebx leal -8(%ebp),%ebx# Compute buf as %ebp-8 subl $20, %esp# Allocate stack space movl %ebx, (%esp)# Push buf addr on stack call gets# Call gets... /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); } Return Address Saved %ebp %ebp Stack Frame for main Stack Frame for echo [3][2][1][0] buf Before call to gets 11

University of Washington Buffer Overflow Stack Example f2:call 80484f f7:mov 0xfffffffc(%ebp),%ebx # Return Point 0xffffc638 buf 0xffffc658 Return Address Saved %ebp Stack Frame for main Stack Frame for echo [3][2][1][0] Stack Frame for main Stack Frame for echo xx buf ff c f7 Before call to gets

University of Washington Buffer Overflow Example #1 13 Overflow buf, but no problem 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo xx buf 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo buf Before call to gets Input ff c f7 ff c f7

University of Washington Buffer Overflow Example #2 14 Base pointer corrupted 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo xx buf 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo buf Before call to gets Input a:83 c4 14 add $0x14,%esp # deallocate space d:5b pop %ebx # restore %ebx e:c9 leave # movl %ebp, %esp; popl %ebp f:c3 ret # Return ff c f7 ffc f7

University of Washington Buffer Overflow Example #3 15 Return address corrupted 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo xx buf 0xffffc638 0xffffc658 Stack Frame for main Stack Frame for echo buf Before call to gets Input ABC 80485f2:call 80484f f7:mov 0xfffffffc(%ebp),%ebx # Return Point ff c f7 0485f7

University of Washington Malicious Use of Buffer Overflow 16 Input string contains byte representation of executable code Stack frame must be big enough to hold exploit code Overwrite return address with address of buffer (need to know B) When bar() executes ret, will jump to exploit code (instead of A) int bar() { char buf[64]; gets(buf);... return...; } void foo(){ bar();... } Stack after call to gets() B (was A) return address A foo stack frame bar stack frame B exploit code pad data written by gets()

University of Washington Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines Internet worm  Early versions of the finger server (fingerd) used gets() to read the argument sent by the client:  finger  Worm attacked fingerd server by sending phony argument:  finger “exploit-code padding new-return- address”  exploit code: executed a root shell on the victim machine with a direct TCP connection to the attacker. 17

University of Washington Code Red Worm History  June 18, Microsoft announces buffer overflow vulnerability in IIS Internet server  July 19, over 250,000 machines infected by new virus in 9 hours  White house must change its IP address. Pentagon shut down public WWW servers for day 18

University of Washington Code Red Exploit Code Starts 100 threads running Spread self  Generate random IP addresses & send attack string  Between 1st & 19th of month Attack  Send 98,304 packets; sleep for 4-1/2 hours; repeat  Denial of service attack  Between 21st & 27th of month Deface server’s home page  After waiting 2 hours Later versions even more aggressive And it goes on still… 19

University of Washington Avoiding Overflow Vulnerability Use library routines that limit string lengths  fgets instead of gets (second argument to fgets sets limit)  strncpy instead of strcpy  Don’t use scanf with %s conversion specification  Use fgets to read the string  Or use %ns where n is a suitable integer /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ fgets(buf, 4, stdin); puts(buf); } 20

University of Washington System-Level Protections Randomized stack offsets  At start of program, allocate random amount of space on stack  Makes it difficult for hacker to predict beginning of inserted code Nonexecutable code segments  Only allow code to execute from “text” sections of memory  Do NOT execute code in stack, data, or heap regions  Hardware support 21 FF 00 Stack Text Data Heap 08 not drawn to scale

University of Washington Worms and Viruses Worm: A program that  Can run by itself  Can propagate a fully working version of itself to other computers Virus: Code that  Adds itself to other programs  Cannot run independently Both are (usually) designed to spread among computers and to wreak havoc (and, these days, profit$$$) 22