Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June 27 2013, Dipartimento di Fisica, Universita’ di Pavia, Italy.

Slides:



Advertisements
Similar presentations
Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Advertisements

Do gluons carry half of the nucleon momentum? X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang NJU and PMO Joint Center for Particle Nuclear.
Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Unharmony within the Thematic Melodies of Twentieth Century Physics X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang NJU and PMO Joint.
Polarized structure functions Piet Mulders ‘Lepton scattering and the structure of nucleons and nuclei’ September 16-24, 2004
Gauge invariance and Canonical quantization for internal dynamical variables X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang NJU and PMO.
1 Non-collinearity in high energy scattering processes Piet Mulders WHEPP X January 2008 TITLE.
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Poincare sub-algebra and gauge invariance in nucleon structure Xiang-Song Chen Huazhong University of Science & Technology 陈相松 华中科技大学 武汉 10 July
Xiangdong Ji University of Maryland Shanghai Jiao Tong University Parton Physics on a Bjorken-frame lattice July 1, 2013.
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Proton Spin Decomposition : The Second Hot Debate in Proton Spin Physics Hai-Yang Cheng Academia Sinica Anomalous gluon & sea-quark interpretation of smallness.
Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
Chiral-even and odd faces of transverse Sum Rule Trieste(+Dubna), November Oleg Teryaev JINR, Dubna.
SCALE LAWS AT LARGE TRANSVERSE MOMENTUM GENERALIZED COUNTING RULE FOR HARD EXCLUSIVE PROCESS Feb. 23, Kijun Park.
Poincare covariance, Canonical quantization and Gauge invariance in the Nucleon internal structure X.S.Chen, Dept. of Phys., Huazhong Univ. Sci. Tec. X.F.Lu,
PandaX experiment Direct detection of dark matter using Xenon TPC in Sichuan, China.
Gauge invariance, Canonical quantization and Lorentz covariance in the internal structure X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang.
Spin, orbital angular momentum and sum rules connecting them. Swadhin Taneja (Stony Brook University) 11/5/2015Berkeley workshop.
Poincare covariance, Canonical quantization and Gauge invariance in the Nucleon internal structure X.S.Chen, Dept. of Phys., Huazhong Univ. Sci. Tec. X.F.Lu,
Recent works on orbital angular momentum 1. Introduction 2. Model-independent complete decomposition of the nucleon spin 3. Model-dependent insight into.
Nucleon Spin Decomposition and Orbital Angular Momentum in the Nucleon Masashi Wakamatsu, Osaka University 1. Introduction to the nucleon spin decomposition.
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
1 TMDs, offering opportunities at small k T and small x! Piet Mulders Annual Meeting of the GDR PH-QCD (December 15-17, 2014) Ecole Polytechnique,
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
Gluon Spin and OAM with Different Definitions INT Workshop Feb 6-17, 2012 Orbital Angular Momentum in QCD Xiang-Song Chen Huazhong University of Science.
0 Simonetta Liuti University of Virginia Structure of Nucleons and Nuclei Workshop Como, June 10 th- 14 th, 2013 N&N-StructureSimonetta Liuti Generalized.
Problems in nucleon structure study X.S.Chen, Dept. of Phys., HUST. W.M.Sun, Dept. of Phys., Nanjing Univ. Fan Wang, Dept. of Phys. Nanjing Univ C.W. Wong,
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Towards a final criteria of separating momentum and angular momentum Outline: I.The matter of convenience II.The matter of reasonableness III.The matter.
Art of Spin Decomposition Xiang-Song Chen 陈相松 Huazhong Univ. of Sci. & Tech. 华中科技大学 Outline:  Spin sum rules and controversies  A most familiar example.
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
} } Lagrangian formulation of the Klein Gordon equation
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Nucleon spin structure and Gauge invariance, Canonical quantization X.S.Chen, Dept. of Phys., Sichuan Univ. X.F.Lu, Dept. of Phys., Sichuan Univ. W.M.Sun,
Transverse-Momentum Distributions and spherical symmetry Cédric Lorcé Mainz University Germany in collaboration with Barbara Pasquini Pavia University.
Relation between TMDs and PDFs in the covariant parton model approach Relation between TMDs and PDFs in the covariant parton model approach Petr Zavada.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Proton spin structure in phase-space May 17, FSU Alumni Center, Tallahassee, Florida, USA Cédric Lorcé CPhT Baryons May 2016 Florida State University.
Structure functions are parton densities P.J. Mulders Vrije Universiteit Amsterdam UIUC March 2003 Universality of T-odd effects in single.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
May , JLab, Newport News, VA, USA
Probing the gluon Wigner distribution in diffractive dijet production
Wigner, Husimi and GTMD at small-x
Accessing the gluon Wigner distribution in ep and pA collisions
Structure and Dynamics of the Nucleon Spin on the Light-Cone
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Quark’s angular momentum densities in position space
August 29, Riken Tokyo Office, Tokyo, Japan
September 29th, IPNO, Orsay
Can We Learn Quark Orbital Motion from SSAs?
Unique Description for SSAs in DIS and Hadronic Collisions
Nucleon structure and Gauge field theory
Unifying the Mechanisms for SSAs in Hard Process
Presentation transcript:

Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy

The outline Dark spin Quark spin ? ~ 30 % The decompositions in a nutshell Canonical formalism and Chen et al. approach Geometrical interpretation of gauge symmetry Path-dependence and measurability Conclusions Basic question

Jaffe-Manohar (1990) The decompositions in a nutshell SqSq SgSg LgLg LqLq Noether’s theorem

Ji (1997) Jaffe-Manohar (1990) The decompositions in a nutshell SqSq SgSg LgLg LqLq SqSq JgJg LqLq Noether’s theorem

Ji (1997) Jaffe-Manohar (1990) Chen et al. (2008) The decompositions in a nutshell SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Gauge-invariant extension (GIE) Noether’s theorem

Wakamatsu (2010) Ji (1997) Jaffe-Manohar (1990) Chen et al. (2008) The decompositions in a nutshell SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Gauge-invariant extension (GIE) Noether’s theorem

Wakamatsu (2010) Ji (1997) Jaffe-Manohar (1990) Chen et al. (2008) CanonicalKinetic The decompositions in a nutshell SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Gauge-invariant extension (GIE) Noether’s theorem

Wakamatsu (2010) Ji (1997) Jaffe-Manohar (1990) Chen et al. (2008) CanonicalKinetic The decompositions in a nutshell SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Gauge-invariant extension (GIE) Noether’s theorem

The Chen et al. approach [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)]

The Chen et al. approach Gauge transformation (assumed) [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)]

The Chen et al. approach Gauge transformation (assumed) Pure-gauge covariant derivatives [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)]

The Chen et al. approach Gauge transformation (assumed) Field strength Pure-gauge covariant derivatives [Chen et al. (2008,2009)] [Wakamatsu (2010,2011)]

The canonical formalism Textbook Dynamical variables Lagrangian [C.L. (2013)]

The canonical formalism Textbook Gauge covariant Dynamical variables Lagrangian [C.L. (2013)]

The canonical formalism Textbook Gauge covariant Gauge invariant Dynamical variables Lagrangian Dirac variables Dressing fieldGauge transformation [Dirac (1955)] [Mandelstam (1962)] [C.L. (2013)]

The analogy with General Relativity [C.L. (2012,2013)] Dual role

Pure gauge Physical polarizations The analogy with General Relativity Degrees of freedom [C.L. (2012,2013)] Dual role

Pure gauge Physical polarizations The analogy with General Relativity Geometrical interpretation Parallelism Curvature Degrees of freedom [C.L. (2012,2013)] Dual role

Pure gauge Physical polarizations Analogy with General Relativity The analogy with General Relativity Geometrical interpretation Parallelism Curvature Inertial forces Gravitational forces Degrees of freedom [C.L. (2012,2013)] Dual role

[Wakamatsu (2010)][Chen et al. (2008)] The Stueckelberg symmetry Ambiguous! [Stoilov (2010)] [C.L. (2013)] SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq Coulomb GIE [Hatta (2011)] [C.L. (2013)] SqSq SgSg LgLg LqLq Light-front GIE L pot SqSq SgSg LgLg LqLq Infinitely many possibilities!

Gauge GIE1 GIE2 Gauge-variant operator « Natural » gauges Lorentz-invariant extensions ~ Rest Center-of-mass Infinite momentum « Natural » frames The gauge-invariant extension (GIE)

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport Non-local !

The geometrical interpretation [Hatta (2012)] [C.L. (2012)] Parallel transport Path dependent ! Stueckelberg symmetry Non-local !

The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Canonical quark OAM operator

FSIISI SIDISDrell-Yan The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Naive T-even Canonical quark OAM operator Light-front LqLq

FSIISI SIDISDrell-Yan The path dependence [Ji, Xiong, Yuan (2012)] [Hatta (2012)] [C.L. (2013)] Coincides locally with kinetic quark OAM Naive T-even Canonical quark OAM operator x-based Fock-SchwingerLight-front LqLq LqLq

The gauge symmetry Quantum electrodynamics « Physical » [C.L. (in preparation)] « Background »

The gauge symmetry Quantum electrodynamics Passive « Physical » [C.L. (in preparation)] « Background »

The gauge symmetry Quantum electrodynamics PassiveActive « Physical » [C.L. (in preparation)] « Background »

The gauge symmetry Quantum electrodynamics PassiveActive « Physical » [C.L. (in preparation)] « Background » Active x (Passive) -1

The gauge symmetry Quantum electrodynamics PassiveActive « Physical » [C.L. (in preparation)] « Background » Active x (Passive) -1 Stueckelberg

The semantic ambiguity « measurable » Quid ? « physical » « gauge invariant »

The semantic ambiguity Observables « measurable » Quid ? « physical » « gauge invariant » Measurable, physical, gauge invariant (active and passive) E.g. cross-sections

The semantic ambiguity Path Stueckelberg Background Observables « measurable » Quid ? « physical » « gauge invariant » Measurable, physical, gauge invariant (active and passive) Expansion scheme E.g. cross-sections dependent E.g. collinear factorization

The semantic ambiguity Path Stueckelberg Background Observables Quasi-observables « measurable » Quid ? « physical » « gauge invariant » Measurable, physical, gauge invariant (active and passive) « Measurable », « physical », « gauge invariant » (only passive) Expansion scheme E.g. cross-sections E.g. parton distributions dependent E.g. collinear factorization

CanonicalKinetic The observability SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Not observableObservableQuasi-observable [Wakamatsu (2010)] [Ji (1997)] [Jaffe-Manohar (1990)] [Chen et al. (2008)]

The gluon spin [Jaffe-Manohar (1990)][Hatta (2011)] Light-front GIE Light-front gauge Gluon helicity distribution Local fixed-gauge interpretationNon-local gauge-invariant interpretation « Measurable », gauge invariant but non-local

The kinetic and canonical OAM Quark naive canonical OAM (Jaffe-Manohar) [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2011)] Model-dependent ! Kinetic OAM (Ji) [Ji (1997)] [Penttinen et al. (2000)] [Kiptily, Polyakov (2004)] [Hatta (2012)] but No gluons and not QCD EOM! [C.L., Pasquini (2011)] Pure twist-3 Canonical OAM (Jaffe-Manohar) [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)]

Wakamatsu (2010) Ji (1997) Jaffe-Manohar (1990) Chen et al. (2008) CanonicalKinetic The conclusion SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq SgSg LgLg LqLq SqSq JgJg LqLq Not observableObservable Quasi-observable

Backup slides

[PRD79 (2009) ] [Nucl. Phys. A825 (2009) 115] [PRL104 (2010) ] [PRD79 (2009) ] GTMDs TMDs Charges PDFs GPDs FFsTMCs TMFFs [PRD84 (2011) ] [PLB710 (2012) 486] [PRD84 (2011) ] [PRD85 (2012) ] [JHEP1105 (2011) 041] [PRD74 (2006) ] [PRD78 (2008) ] [PRD79 (2009) ] Phase-space densities The parton distributions

« Vorticity » The twist-2 OAM Quark Wigner operator [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark OAM operator Exact relation

The spin-spin-orbit correlations [C.L., Pasquini (2011)]

Overlap representation MomentumPolarization [PRD74 (2006) ] [PRD78 (2008) ] [PRD79 (2009) ] Light-front quark modelsWigner rotation The light-front wave functions

OAM Canonical (naive) Kinetic Canonical GTMDs TMDs GPDs Phenomenological comparison but The orbital angular momentum