Anion Photoelectron Spectroscopic Studies of NbC 4 H 4 ‾, NbC 6 H 6 ‾ and NbC 6 H 4 ‾ Products of Flow Tube Reactions of Niobium with Butadiene Melissa.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Water Solvation of Copper Hydroxide Brett Marsh-UW Madison.
Electronic Structure of AlMoO y − (y = 1−4) Determined by Anion Photoelectron Spectroscopy and DFT Calculations Sarah E. Waller 67 th International Symposium.
Photoelectron-Photofragment Coincidence Spectroscopy of tert- Butoxide and the Carbanion Isomer Ben Shen Continetti Group University of California, San.
Photoelectron Spectroscopy Lecture 3: vibrational/rotational structure –Vibrational selection rules –Franck-Condon Effect –Information on bonding –Ionization.
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
La-Mediated Bond Activation, Coupling, and Cyclization of 1,3-butadiene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry.
VIBRONIC SPECTROSCOPY OF THE PHENYLCYANOMETHYL RADICAL 6/23/11 1 DEEPALI N. MEHTA, NATHANAEL M. KIDWELL, JOSEPH A. KORN, AND TIMOTHY S. ZWIER 66 th International.
Structural Isomerization of the Gas Phase 2-Norbornyl Cation Revealed with Infrared Spectroscopy and Computational Chemistry Dept. of Chemistry University.
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
1 Li Xiao and Lichang Wang Department of Chemistry & Biochemistry Southern Illinois University Carbondale The Structure Effect of Pt Clusters on the Vibrational.
The Negative Ion Photoelectron Spectra of MoV and CrV Presentedby Beau Barker.
68th International Symposium on Molecular Spectroscopy Ohio State University June 17-21, 2013 Wei-Li Li, Tian Jian, Gary V. Lopez, and Lai-Sheng Wang Department.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO OSU International.
Vibrational and Geometric Structures of La 3 C 2 O and La 3 C 2 O + from MATI Spectra and ab initio Calculations Mourad ROUDJANE, Lu WU, and Dong-Sheng.
Electronic spectroscopy of Li(NH 3 ) 4 Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University of Leicester UK.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Probing Solvation Effects in IBr - (CO 2 ) n by Photoelectron Spectroscopy Elisa Miller Leonid Sheps, Ryan Calvi, and W.Carl Lineberger JILA, Department.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Electronic Structure of Oxyallyl Diradical: A Photoelectron Spectroscopic Study Takatoshi Ichino, Rebecca L. Hoenigman, Adam J. Gianola, Django H. Andrews,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Sequential Oxidation of Group 6 Transition Metal Suboxide Clusters Caroline Chick Jarrold Department of Chemistry, Indiana University November 30, 2015.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
Studies of Transient Neutral Molecules by Dissociative Photodetachment of Cooled Molecular Anions Christopher Johnson Continetti Research Lab University.
Spectroscopy of Multiply Charged Metal Ions: IR Study of Mn 2+ (18-crown-6 ether)(MeOH) 1-3 Jason D. Rodriguez and James M. Lisy Department of Chemistry,
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Antonio D. Brathwaite University of the Virgin Islands, St Thomas, USVI.
Chan Ho Kwon, Hong Lae Kim, and Myung Soo Kim* National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul.
ANION PHOTOELECTRON SPECTROSCOPIC STUDIES OF NbCr(CO) n ‾ (n = 2,3) HETEROBIMETALLIC CARBONYL COMPLEXES Melissa A. Baudhuin, Praveenkumar Boopalachandran,
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
HOW DOES SCANDIUM ATOM BIND TO 1-PHENYL NAPHTHALENE? BRADFORD R. SOHNLEIN, JASON F. FULLER, AND DONG-SHENG YANG University of Kentucky Lexington, KY
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
The ethyl radical in superfluid helium nanodroplets: Rovibrational spectroscopy and ab initio calculations 1 Department of Chemistry, University of Georgia.
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
2008 International Symposium on Molecular Spectroscopy Anion Photoelectron Spectra of CHX 2 - and CX 2 - Properties of the Corresponding Neutrals Scott.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
70 th International Symposium on Molecular Spectroscopy University of Illinois at Champaign-Urbana Jun 22-26, 2015 Observation of dipole-bound state and.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF LANTHANIDE (Gd, Lu) BENZENE COMPLEXES M. ROUDJANE, S. KUMARI and D.-S. YANG University of Kentucky Lexington,
Ce-Promoted Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry University of Kentucky, Lexington,
Photoelectron Spectroscopy of Pyrazolide Anion Three Low-lying Electronic States of the Pyrazolyl Radical Adam J. Gianola Takatoshi Ichino W. Carl Lineberger.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Spectroscopy of the Low- Energy States of BaO + Joshua H. Bartlett, Robert A. VanGundy, Michael C. Heaven 70 th International Symposium on Molecular Spectroscopy.
Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical.
INFARED SPECTROSCOPY OF Mn(CO 2 ) n − CLUSTER ANIONS Michael C Thompson, Jacob Ramsay and J. Mathias Weber June 24, th International Symposium.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
BORONYL MIMICS GOLD: A PHOTOELECTRON SPECTROSCOPY STUDY Tian Jian, Gary V. Lopez, Lai-Sheng Wang Department of Chemistry, Brown University International.
Gas Phase Infrared Spectroscopy of Mass Selected Carbocations Department of Chemistry University of Georgia Athens Georgia, 30602
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
Mass-Analyzed Threshold Ionization Spectroscopy
Characterization of CHBrCl2 photolysis by velocity map imaging
Photoelectron Spectroscopy of Substituted Phenylnitrene Anions
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Department of Chemistry University of Kentucky
C-H Bond Activation of Butenes
Department of Chemistry University of Kentucky
Presentation transcript:

Anion Photoelectron Spectroscopic Studies of NbC 4 H 4 ‾, NbC 6 H 6 ‾ and NbC 6 H 4 ‾ Products of Flow Tube Reactions of Niobium with Butadiene Melissa A. Baudhuin, † Praveenkumar Boopalachandran, † Stephen R. Miller, ‡ D. Alex Schnepper, † Doreen G. Leopold † † University of Minnesota – Chemistry Department ‡ Gustavus Adolphus College – Chemistry Department June 17 th,

Nb reactions with small unsaturated hydrocarbons Gas phase systems are not complicated by solvent effects Provide benchmark values for computational studies Serve as models for understanding processes occurring in real catalytic reactions ▫ C-H bond activation ▫ C-C bond formation and/or activation ▫ Dehydrogenation ▫ Intracluster cyclization → May contribute to the discovery of improved industrial catalysts 2 ORGANOMETALLIC COMPLEXES

Flowing Afterglow Ion-Molecule Reactor Magnetic Sector Mass Analyzer Photoelectron Spectroscopy Chamber Slits Argon Ion Laser Electron Kinetic Energy Analyzer Chamber 1 Chamber 2 Chamber 3 Chamber 4 Chamber 5 hν (488 or 514 nm) 3 Electron Detector ANION PHOTOELECTRON SPECTROMETER

4 INTERPRETING DATA (eKE) Electron Kinetic Energy (eBE) Electron Binding Energy eBE = hν - eKE X+ e ‾ ←X‾X‾ +hνhν X*+ e ‾ ←X‾X‾ +hνhν X‾X‾ X X* 1 eV ≈ 8065 cm -1

5 FLOW TUBE REACTION PRODUCTS OF Nb + C 4 H 6 Peak #Molecule 1NbC 2 H 2 O ‾ 2NbC 4 H 4 O ‾ 3NbC 6 H 8 ‾ 4NbC 8 H 8 ‾ 5NbC 8 H 10 O ‾ 6NbC 10 H 14 ‾ 7Nb 2 C 4 H 4 ‾ 8Nb 2 C 6 H 2 ‾ 9Nb 2 C 6 H 4 ‾ 3 Nb 2 C 8 H 4 ‾

6 PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm Nb + Butadiene 1 eV ≈ 8065 cm -1

7 PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm Calculated: B3LYP/gen [Nb → SDD, C and H → G(df,pd)] Nb + Butadiene

8 PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm Neutral moleculeNb + C 4 H 6 exp. Electron Affinity (eV)0.995 Mode 2ν M-L (cm -1 )375 Mode 1ν op (cm -1 )665 AnionNb + C 4 H 6 exp. Mode 2ν M-L (cm -1 )335 C s symmetry Nb + Butadiene X̃ 2 A' ← X̃ 3 A '

9 Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm Neutral moleculeNb + C 4 H 6 exp.Nb + C 2 H 4 exp. Electron Affinity (eV) ± Mode 2ν M-L (cm -1 ) ± 15 Mode 1ν op (cm -1 ) ± 20 AnionNb + C 4 H 6 exp.Nb + C 2 H 4 exp. Mode 2ν M-L (cm -1 )335- C s symmetry Nb + Butadiene X̃ 2 A' ← X̃ 3 A '

10 Miller, S. R. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Reagent: Ethylene PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm Nb + Butadiene X̃ 2 A' ← X̃ 3 A '

11 PHOTOELECTRON SPECTRUM OF NbC 6 H 6 − AT 488 nm Inset: Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – Nb + Butadiene C 6v symmetry X̃ 2 A 1 ← X̃ 3 A 1 2 A 1 ← X̃ 3 A 1

12 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm A B A NbC 6 H 4 ‾ NbC 6 H 4 NbC 6 H 4 * B Nb + Butadiene

cm cm -1 Neutral moleculeTransition A Electron Affinity (eV)1.110 Mode 1ν M-L (cm -1 )360 AnionTransition A Mode 1ν M-L (cm -1 )315 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm Nb + Butadiene MoleculeNbNbC 4 H 4 NbC 6 H 6 NbC 6 H 4 EA (eV)0.918 ± 0.005* *Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Nbs1d4s1d4 Nb ‾ s2d4s2d4

cm cm -1 Neutral moleculeTransition ATransition B eBE (eV) Mode 1ν M-L (cm -1 )360 AnionTransition ATransition B Mode 1ν M-L (cm -1 ) PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm Nb + Butadiene

15 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm A B A NbC 6 H 4 ‾ NbC 6 H 4 NbC 6 H 4 * ‾ B Perhaps Transition A is due to an excited state of the anion and accesses the same state of the neutral as Transition B: Nb + Butadiene

16 Relative probability that Transition A would occur: Thermal Equilibrium? 2 x eV 3690 cm -1 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm A B A NbC 6 H 4 ‾ NbC 6 H 4 NbC 6 H 4 * ‾ B ∆E

17 Maybe: Transition A and B access different neutral states Transition A and B are from different isomers PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm A B Nb + Butadiene

NbC 6 H 4 ‾ DFT ANALYSIS 18 Identify the isomer: DFT (B3LYP/gen) ▫ Small # of active modes in spectrum → expect a higher symmetry structure C 2v -C 4 H 4 -Nb-C 2 C s -C 4 H 4 -Nb-C 2 C 2v -Nb-benzyne (planar) C s -Nb-benzyne (nonplanar) gen: Nb → SDD & C and H → G(df,pd)

19 Calculated: B3LYP/gen [Nb → SDD, C and H → G(df,pd)] Note: * TDB3LYP (assumed to be a vertical transition) CONCLUSIONS: NbC 6 H 4 − PHOTOELECTRON SPECTRUM

20 Current Group Members Dr. Doreen Leopold (Adviser) Alex Schnepper Former Group Members Dr. Praveen Boopalachandran Srijay Rajan Dr. Steve Miller Dr. Evan Millam Dr. Tim Marcy Funding NSF ACKNOWLEDGEMENTS

QUESTIONS 21

22

Nb-benzyne vs benzyne Å 1.39 Å 1.40 Å 1.09 Å 1.39 Å 1.40 Å No evidence of a C ≡ C stretch Calculated: B3LYP/gen [Nb → SDD, C and H → G(df,pd)] 1.34 Å 1.40 Å 1.09 Å 1.40 Å 1.09 Å

24 StateIsomer abbrev.E rel (eV)Stable* 5B25B2 C 2v -Nb-benzyne0.0000Yes 5 A"C s -Nb-benzyne0.0003Yes 3B23B2 C 2v -Nb-benzyne0.0587Yes 3 A"C s -Nb-benzyne0.0590Yes 1A11A1 C 2v -Nb-benzyne0.5570Yes 1 A'C s -Nb-benzyne0.5570Yes 1 A'C s -C 4 H 4 -Nb-C Yes 3 A'C s -C 4 H 4 -Nb-C Yes 3B13B1 C 2v -C 4 H 4 -Nb-C No 1A11A1 C 2v -C 4 H 4 -Nb-C No 5 A'C s -C 4 H 4 -Nb-C No 5B25B2 C 2v -C 4 H 4 -Nb-C No NbC 6 H 4 ‾ DFT ANALYSIS C 2v -Nb-benzyne C s -Nb-benzyne C s -C 4 H 4 -Nb-C 2 Note (*) Stable means no imaginary frequencies in the calculation Anion State: Singlet, triplet, and quintet states of each isomer were calculated

Flow Tube Configuration C4H6C4H6 25

Previous Work: Nb + C 2 H 4 Miller, S. R. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Photoelectron Spectrum of NbC 4 H 4 ‾ NbC 4 H 4 + e‾ ← NbC 4 H 4 ‾ + hν A DFT (B3LYP/gen) Isomer Neutral molecule Transition A Exp. Transition A Calc. Electron Affinity (eV)0.997 ± Mode 2ν M-L (cm -1 )385 ± Mode 1ν op (cm -1 )660 ± C s symmetry Transition A X̃ 2 A' ← X̃ 3 A' Calculated: B3LYP/gen gen: Nb → SDD & C and H → G(df,pd) 26

Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – Previous Work: Nb + C 2 H 4 Transition A X̃ 2 A 1 ← X̃ 3 A 1 Transition B 2 A 1 ← X̃ 3 A 1 Calculated: B3LYP/gen gen: Nb → SDD & C and H → G(df,pd) Neutral molecule Transition A Exp. Transition A Calc. Transition B Exp. Transition B Calc. eBE (eV)0.893 ± Mode 4ν M-L (cm -1 )382 ± Mode 3ν op (cm -1 )740 ± ± 20- Mode 2v CH (cm -1 )--955 ± 20- Mode 1v CH (cm -1 )3060 ± ± 30- Anion Transition A Exp. Transition A Calc. Transition B Exp. Transition B Calc. Mode 4ν M-L (cm -1 )375 ± Mode 3ν op (cm -1 )730 ± Summary of experimental and calculated results of NbC 6 H 6 ‾ and NbC 6 H 6 ‾ C 6v symmetry 27

28 C s symmetry Neutral moleculeTransition A Nb + C 2 H 4 exp. Transition A Nb + C 4 H 6 exp. Electron Affinity (eV)0.997 ± Mode 2ν M-L (cm -1 )385 ± Mode 1ν op (cm -1 )660 ± Anion Transition A Nb + C 2 H 4 exp. Transition A Nb + C 4 H 6 exp. Mode 2ν M-L (cm -1 )-335 Note (*) indicates that these transition are simulated Franck-Condon fits PHOTOELECTRON SPECTRUM OF NbC 4 H 4 − AT 488 nm

29 C 6v symmetry Note (*) indicates that these transition are simulated Franck-Condon fits Neutral moleculeTransition A Nb + C 2 H 4 exp. Transition A Nb + C 4 H 6 exp. Electron Affinity (eV)0.893 ± Mode 4ν M-L (cm -1 )382 ± Mode 3v op (cm -1 )740 ± Anion Transition A Nb + C 2 H 4 exp. Transition A Nb + C 4 H 6 exp. Mode 4ν M-L (cm -1 )375 ± PHOTOELECTRON SPECTRUM OF NbC 6 H 6 − AT 488 nm

30 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm

31 PHOTOELECTRON SPECTRUM OF NbC 6 H 4 − AT 488 nm

NbC 6 H 4 − Experimental Results at Room Temperature and 488 nm 32 Neutral moleculeTransition FTransition Z eBE (eV) Mode 1ν M-L (cm -1 ) AnionTransition FTransition Z Mode 1ν M-L (cm -1 )315370

33 Photoelectron Spectrum of NbC 6 H 4 − : Theory versus Experiment C 2v symmetry C s symmetry Calculated: B3LYP/gen [Nb → SDD, C and H → G(df,pd)] Note: * TDB3LYP (assumed to be a vertical transition)

PREVIOUS WORK Anion photoelectron spectroscopic studies of anion products produced by flow tube reactions of Nb with ethylene Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – ← With Ethylene ← Without Ethylene 34

PREVIOUS WORK: Nb + C 2 H 4 Miller, S. R. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Photoelectron Spectrum of NbC 4 H 4 ‾ NbC 4 H 4 + e‾ ← NbC 4 H 4 ‾ + hν 35

Miller, S. R. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Photoelectron Spectrum of NbC 4 H 4 ‾ NbC 4 H 4 + e‾ ← NbC 4 H 4 ‾ + hν Broad Spectral Features Unresolved transitions No information on origin position or vibrational frequencies Suspected to come from at least one additional isomer 36 PREVIOUS WORK: Nb + C 2 H 4

Miller, S. R. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Marcy, T. P. Ph.D. Thesis, University of Minnesota: Minneapolis, MN, Photoelectron Spectrum of NbC 4 H 4 ‾ NbC 4 H 4 + e‾ ← NbC 4 H 4 ‾ + hν A DFT (B3LYP/gen) Isomer C s symmetry gen: Nb → SDD & C and H → G(df,pd) Transition A X̃ 2 A' ← X̃ 3 A' 37

Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – Photoelectron Spectrum of NbC 6 H 6 ‾ NbC 6 H 6 + e‾ ← NbC 6 H 6 ‾ + hν 38 PREVIOUS WORK: Nb + C 2 H 4

Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – Photoelectron Spectrum of NbC 6 H 6 ‾ NbC 6 H 6 + e‾ ← NbC 6 H 6 ‾ + hν B A DFT (B3LYP/gen) Isomer C 6v symmetry Transition A X̃ 2 A 1 ← X̃ 3 A 1 Transition B 2 A 1 ← X̃ 3 A 1 gen: Nb → SDD & C and H → G(df,pd) 39 PREVIOUS WORK: Nb + C 2 H 4

40 PHOTOELECTRON SPECTRUM OF NbC 6 H 6 − AT 488 nm Inset: Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – C 6v symmetry A Neutral moleculeNb + C 4 H 6 exp. Electron Affinity (eV)0.891 Mode 2ν M-L (cm -1 )377 Mode 1v op (cm -1 )740 Anion Nb + C 4 H 6 exp. Mode 2ν M-L (cm -1 )372 A Nb + Butadiene

41 PHOTOELECTRON SPECTRUM OF NbC 6 H 6 − AT 488 nm Inset: Miller, S.R.; Marcy, T.P.; Millam, E.L.; Leopold, D.G. J. Am. Chem. Soc. 2007, 129, 3482 – C 6v symmetry A Neutral moleculeNb + C 4 H 6 exp.Nb + C 2 H 4 exp. Electron Affinity (eV) ± Mode 2ν M-L (cm -1 ) ± 10 Mode 1v op (cm -1 ) ± 15 Anion Nb + C 4 H 6 exp.Nb + C 2 H 4 exp. Mode 2ν M-L (cm -1 ) ± 15 A Nb + Butadiene

42 PHOTOELECTRON SPECTRUM OF NbC 6 H 6 − AT 488 nm Calculated: B3LYP/gen [Nb → SDD, C and H → G(df,pd)] Nb + Butadiene