1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.

Slides:



Advertisements
Similar presentations
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
New Large* Neutrino Detectors
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Low Energy Neutrino Astrophysics
LAGUNA and Neutrino Physics NOW 2008 Lothar Oberauer TU München, Germany.
Neutrino physics: experiments and infrastructure Anselmo Cervera Villanueva Université de Genève Orsay, 31/01/06.
Comparing Large Underground Neutrino Detector Technologies: Liquid Argon, Liquid Scintillator, and Water Cherenkov John G. Learned University of Hawaii.
Searching for an underground national lab in China Yifang Wang July 23, 2008.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Liquid Scintillation Detectors for High Energy Neutrinos John G. Learned Department of Physics and Astronomy, University of Hawaii See: arXiv:
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
Alain Blondel Detectors UNO (400kton Water Cherenkov) Liquid Ar TPC (~100kton)
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Long Baseline Experiments at Fermilab Maury Goodman.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Alain Blondel. AIDA-Neutrino meeting AIDA Neutrino detector studies 1. News from the neutrino scene 2. Beam requirements for AIDA 3. Discuss.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Counting Electrons to Measure the Neutrino Mass Hierarchy J. Brunner 17/04/2013 APC.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
Unofficial* summary of the Long Baseline Neutrino Experiment (LBNE) physics workshop Seattle, Aug 9 to Aug 11 David Webber August 24, 2010 *Many studies/plots.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Neutrino Oscillations at Homestake from Chlorine to the Megadetector Ancient Origins of the Question ~1860 Darwin publishes “On The Origin of Species”-
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Search for Sterile Neutrino Oscillations with MiniBooNE
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
An experiment to measure   with the CNGS beam off axis and a deep underwater Cherenkov detector in the Gulf of Taranto CNGS.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
 CC QE results from the NOvA prototype detector Jarek Nowak and Minerba Betancourt.
Detector R&D for European projects Liquid Scintillator: LENA ICFA Neutrino European Meeting Paris, January 8 – 10, 2014 Wladyslaw H. Trzaska.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
IPHC-IN2P3/CNRS Strasbourg
The Antares Neutrino Telescope
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Neutrinoastrophysik bei niedrigen Energien BOREXINO and LAGUNA
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
Presentation transcript:

1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department

2 Liquid Scintillators are well known as neutrino targets Poltergeist ~ 1 t BOREXINO ~ 300 t KamLAND ~ 1000 t Double-Chooz ~ 10 t SNO+ ~ 1000 t

3 What’s about a ~ 50 kt Detector ? LENA – Low Energy Neutrino Astronomy (~50 kt deep underground detector) Hanohano (~10 kt deep ocean detector)

4 LENA Physics Goals Proton Decay Galactic Supernova Burst Diffuse Supernova Neutrino Background Long baseline neutrino oscillations Solar Neutrinos Geo neutrinos Reactor neutrinos Neutrino oscillometry Atmospheric neutrinos Dark Matter indirect search L. Oberauer, TUM

5 LENA and proton decay High sensitivity to p -> K (eff. ~ 68% instead 6% in SK  ~ 5 x y) Sensitive to a variety of decay channels “invisible” modes, e.g. n ->  For e.g. p -> e +   we expect ~ y (work in progress) T. Marrodan et al., Phys. Rev. D72, (2005) L. Oberauer, TUM

6 LENA and a galactic supernova

7 LENA and a Galactic Supernova Burst Antielectron spectrum with high precision Electron flux with ~ 10 % precision Total flux via neutral current reactions Separation of SN models Spectroscopy of all  flavors Sensitivity on deleptonization neutrinos Time evolution of neutrino burst Details of SN gravitational collapse Chance to separate low/high   and mass hierarchy (normal/inverted) Coincidence with gravitational wave detectors L. Oberauer, TUM

8 Separation of SN models ? Yes! Possible independent from oscillation model due to neutral current reactions in LENA TBPKRJLL 12-C: Nu-p: for 8 solar mass progenitor and 10 kpc distance

9 LENA and the Diffuse Supernova Background Excellent background rejection ( e p->e + n) Energy window 10 to 30 MeV. High efficiency (100% with 50 kt target) High discovery potential in LENA ~2 to 20 events per year are expected (model dependent) L. Oberauer, TUM M. Wurm et al., Phys.Rev.D 75 (2007)

10 LENA and long baseline neutrino oscillations Separation between e- and  -like events Pulse shape discrimination (risetime, width) Track reconstruction Muon decay  e  Work in progress electrons (1.2 GeV) muons (1.2 GeV) L. Oberauer, TUM

11 Tracking in a scintillator detector HE particles create along their track a light front very similar to a Cherenkov cone. Single track reconstruction based on:  Arrival times of 1 st photons at PMTs  Number of photons per PMT Sensitive to particle types due to the ratio of track length to visible energy. Angular resolution of a few degrees, in principal very accurate energy resolution. Work under progress for LENA and scintillator LBNE option for DUSEL -- J. Learned, N. Tolich... Monte- Carlo-study

12 CNGS neutrino induced muons in BOREXINO CERN 770km Direction from CERN (azimuth = 0 degree) real Data – no Monte-Carlo ! BOREXINO is NOT optimized for tracking ! Water Cherenkov Scintillator

13 Study CERN – LENA at Pyhäsalmi (Finland) CERN - Pyhäsalmi 2288 km 5 years nu + 5 years anti-nu GeV Wide band beam 1 – 6 GeV 1.5 MW power Sensitivity on theta_13, CP-parameter, mass hierarchy J. Peltoniemi, Simulations of neutrino oscillations for a wide band beam from CERN to LENA, arXiv: v1 [hep-ex]arXiv: v1 L. Oberauer, TUM

14 preliminary L. Oberauer, TUM

15 preliminary CP - phase  Log( sin(2  Mass Hierarchy > 3 Sigma

16 LENA and Solar Neutrinos High statistics in 7-Be (~ 5400 events per day) Search for small time fluctuations CNO and pep  events per day) Very sensitive test of MSW effect CC and NC measurements of 8-B Search for spectrum deformation Search for non-standard interactions Search for solar e  e  transitions L. Oberauer, TUM

17 LENA and Geo-neutrinos LENA is the only detector within Laguna able to determine the geo neutrino flux In LENA we expect between 300 to 3000 events per year (“best bet” ~ 1500 / year) Good signal / background ratio most significant contribution can be subtracted statistically Separation of geological models together with other detectors L. Oberauer, TUM

18 LENA and Reactor neutrinos At Frejus ~ 17,000 events per year High precision on solar oscillation parameter:  m 2 12     S.T. Petcov, T. Schwetz, Phys. Lett. B 642, (2006), 487 J. Kopp et al., JHEP 01 (2007), 053 L. Oberauer, TUM

19 Scintillator R&D attenuation length Light yields Fluorescence times and spectra Attenuation lengths Scattering lengths Development of an optical model for Monte- Carlo simulations

20 PXE, C 16 H 18 density: 0.99 kg/l light yield: ca ph/MeV fluorescence decay:  2.6ns attenuation length: ≤12m (purified) scattering length: 23m +80% Dodecane, C 12 H 26 density: 0.80 kg/l light yield: ca. 85% fluorescence decay slower attenuation length: >12m scattering length: 33m Solvent Candidates LAB, C H density: 0.86 kg/l light yield: comparable fluorescence decay:  5.2ns attenuation length: <20m scattering length: 25m  Detector diameter of 30m (or even more) is well feasible!  Fluorescence times (3-5ns) and light yield ( pe/MeV) depend on the solvent.  LAB is currently favored.

21 Pre-feasibility study for LENA at Pyhäsalmi (TUM and company Rockplan, Finland) Depth at 1400 m – 1500 m possible ! Geological study completed Vertical detector position Logistics (Vent, Electricity, etc.) considered Construction time of cavern ~ 4 years 1st costs estimate for the whole project Tank feasibility study (accomplished May 2010) L. Oberauer, TUM

22 favoured option: + Tank Construction: 8 years L. Oberauer, TUM

23 Conclusions Scintillator techniques for neutrino physics are very important Reactor-, Solar-, Geo-neutrino experiments Future: Extension to DSNB, Supernova-, Proton-Decay, Long-Baseline -Oscillations Rich R&D-program still on-going First feasibility studies successfully accomplished “White paper” under preparation L. Oberauer, TUM

24 Log (osc. Amplitude) CP – violating parameter Detection signifigance (chi) > 3 sigma preliminary L. Oberauer, TUM

25 Solar Neutrinos and LENA  e  e and 13 C + e  13 N + e

26 Sensitivity on U, Th Energy threshold 1st detection of Geo-neutrinos in KamLAND in 2005 (1kt liquid scintillator detector) arbitrary units

27 Signal & Backgrounds in LENA ~ 1500 per year signal ~ 240 per year in [1.8 MeV – 3.2 MeV] from reactor neutrinos < 30 per year due to 210 Po alpha -n reaction on 13 C (Borexino purity assumed) ~ 1 per year due to cosmogenic background ( 9 Li - beta-neutron cascade) K. Hochmuth et al., Astropart.Phys. 27 (2007) Can be statistically subtracted