The SPHERE/ZIMPOL polarimeter for extra-solar planetary systems Hans Martin SCHMID, ETH Zurich and many collaborators in the SPHERE consortium IPAG Grenoble,

Slides:



Advertisements
Similar presentations
Oct.10, 2007EAMA7 Japanese Space Activity on Exoplanets (JAXAs prespective) & Pathways to Habitable Planets September 16, 2009 Takao Nakagawa (ISAS/JAXA)
Advertisements

NAOS-CONICA (a.k.a NACO) for the VLT
Pierre BAUDOZ (Paris Observatory) A. Boccaletti, D. Mawet, J. Schneider, G. Tinetti, R. Galicher, C. Cavarroc J. Hough, P. Doel, D. Pinfield, C.-U. Keller,
Spectro-Polarimetric High-contrast Exoplanet Research
What is HiCIAO ? Near-infrared high contrast imaging instrument with a linear polarimetor at the 8.2m Subaru telescope. Targets: exoplanets and proto-planetary.
Standard stars for the ZIMPOL polarimeter
- Slide 1 OPTICON Optical-Infrared Astronomy for Europe EC Infrastructures press day 7 July 2005 EC Infrastructures press day 7 July 2005 Gerry Gilmore.
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Fast & Furious: a potential wavefront reconstructor for extreme adaptive optics at ELTs Visa Korkiakoski and Christoph U. Keller Leiden Observatory Niek.
Sarah Kendrew Leiden Instrumentation Group.  One of eight potential instruments for the European ELT, the largest planned optical/IR telescope for the.
HIGH RESOLUTION & CONTRAST Imaging F. Pedichini. PARSEC: 3.26 ly 1 Pc 3 Pc 1 A.U. 1 arcsec 2 arcsec.
ESO, 27 Nov 09 SPHERE – the high contrast challenge Markus Kasper, ESO 1 1.
Definitions for polarimetry Frans Snik Sterrewacht Leiden.
European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
High-contrast imaging with AO Claire Max with help of Bruce Macintosh GSMT Science Working Group December 2002.
Siding Spring at Mars: BOPPS Observations Andrew Cheng (JHU/APL)
Ben R. Oppenheimer, Sasha Hinkley, Anand Sivaramakrishnan, Remi Soummer, Douglas Brenner Ian Parry, David King, Steve Medlen PROJECT 1640.
Meeting of the Blue Dot Team, UCL, London, sept Single Aperture Concepts.
FUTURE DEVELOPMENTS IN IR INSTRUMENTATION AT ESO Mark Casali.
Preliminary Design of the Spectropolarimeter for Arago Martin Pertenaïs 1,2 Coralie Neiner 1 (PI), Laurent Parès 2, Jean-Michel Reess 1, Pernelle Bernardi.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Anthony Boccaletti Observatoire de Paris LESIA. Several instruments dedicated to Exoplanet detection and characterization with High Contrast Imaging since.
10 -3 versus polarimetry: what are the differences? or Systematic approaches to deal with systematic effects. Frans Snik Sterrewacht Leiden.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Polarimetry Christoph Keller. Polarimetry Requirements Polarization sensitivity: amount of fractional polarization that can be detected above a (spatially.
Planets around Low-Mass Stars and Brown Dwarfs Michael Liu Bruce Macintosh NGAO Workshop, Sept 2006.
Searching for Extrasolar Planets with Simultaneous Differential Imaging Eric L. Nielsen, Steward Observatory Michelson Fellow Symposium, Pasadena 2005.
TIGER The TIGER Instrument Overview Phil Hinz - PI July 13, 2010.
Recent & planned high-contrast work on the WCS and P3K Gene Serabyn Nov. 12, 2007.
Circumstellar disk imaging with WFIRST: not just for wide field surveys any more... Tom Greene (NASA ARC) & WFIRST Coronagraph Team AAS / WFIRST Session.
Nadiia Kostogryz & Svetlana Berdyugina
Blue Dot Team « Multi aperture imaging ». BDT sept MAI techniques High accuracy visibility measurement Differential interferometry Nulling.
8 September Observational Astronomy TELESCOPES, Active and adaptive optics Kitchin pp
Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710
Partially Polarized Calibration Stimulus Gerard van Harten a, Frans Snik a, Christoph Keller a, Jeroen Rietjens b, Martijn Smit b a Leiden University,
Direct Imaging of Exoplanets
Big Bear Solar Observatory NST Main Features  All reflecting, off-axis Gregory optical configuration  PM: 1.6 m clear aperture with f/2.4  Figuring.
RAS E-ELT meeting 9th May 08 Fraser Clarke Towards EPICS; high contrast spectroscopy Fraser Clarke N Thatte, G Salter, M Tecza C Verinaud, M Kasper (EPICS.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
Edimburg June 2006 Fast detectors 1 Fast detectors (for E-ELT AO) Philippe Feautrier INSU/CNRS-LAOG.
Clio: 3-5  m planet-finding AO camera Ari Heinze (Steward Observatory) Collaborators: P. Hinz (Steward), S. Sivanandam (Steward), M. Freed (Optical Sciences),
Requirements on array detectors from the OWL Instrument Concept Studies Sandro D’Odorico European Southern Observatory SDW 2005 TAORMINA.
1 A. Boccaletti Pasadena, Sept th Imaging EGPs with JWST/MIRI and VLT/SPHERE valuable experiences for TPF-C A. Boccaletti, P. Baudoz D. Rouan + coronagraphic.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
Eric Pantin, Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. Polarimetry and spectral imaging of mature Jupiter and super-Earth.
ASTR 3010 Lecture 18 Textbook N/A
Molecules in the atmosphere of extrasolar planets, Paris, nov Direct Imaging of Extrasolar Planets Overview of Ground & Space Programs Anthony.
Hubble Space Telescope Coronagraphs John Krist JPL.
Polariametry with NICMOS Dean C. Hines & Glenn Schneider Space Science Institute & Steward Observatory.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
Observing Venus (and Mars) with Adaptive Optics
Ralf Siebenmorgen Monastir, 3-7 th May 2010 The team A Planet Finder Instrument for the VLT Jean-Luc Beuzit (PI), Markus Feldt (Co-PI), David Mouillet.
Lessons Learned from FQPM & AIC P. Baudoz, A. Boccaletti, D. Rouan, D. Mawet & Coronagraphy Observatoire de Paris-Meudon.
AO4ELT, Paris, 23 June 2009 EPICS, exoplanet imaging with the E-ELT Markus Kasper, Jean-Luc Beuzit, Christophe Verinaud, Emmanuel Aller- Carpentier, Pierre.
Simulations in the context of SPHERE Exoplanet Imaging Workshop David Mouillet Lecture 27 Feb 2012 Numerous contributors in the simulation work for SPHERE:
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
Development of Coronagraphs for Exoplanet Detection with SPHERE - direct detection and characterization of Extrasolar Giant Planets in the NIR among nearby.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
Pathways, Barcelona, 16 Sep 2009 EPICS, exoplanet imaging with the E-ELT Raffaele G. Gratton, Markus Kasper (PI), Jean-Luc Beuzit, Christophe Verinaud,
Date of download: 6/21/2016 Copyright © 2016 SPIE. All rights reserved. The empirical radius of a planet is shown as a function of mass, by the blue curve,
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
Page 1 Adaptive Optics in the VLT and ELT era François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Basics of AO.
Focal Plane Instrumentation at Big Bear Solar Observatory
Future Ground Based Solar System Research:
Pyramid sensors for AO and co-phasing
Adaptive optics Now: Soon: High angular resolution
Absence of Impact Polarization in H
Polarimetry: Waveplate Modulation; Calibration
Modern Observational/Instrumentation Techniques Astronomy 500
Presentation transcript:

The SPHERE/ZIMPOL polarimeter for extra-solar planetary systems Hans Martin SCHMID, ETH Zurich and many collaborators in the SPHERE consortium IPAG Grenoble, F J.L. Beuzit, D. Mouillet, P. Puget, J. Charton, G. Chauvin, J.C. Augerau, F. Menard, P. Martinez, A. Eggenberger, et al. ETH Zurich, CH D. Gisler, A. Bazzon, P. Steiner, F. Joos, et al., ASTRON, NL R. Rolfsema, J. Pragt, F. Rigal, J. Kragt, et al. Univ. of Amsterdam NL C. Domink, Ch. Thalmann, R. Waters (SRON), Leiden University NL C. Keller, F. Snik MPIA Heidelberg, D M. Feldt, A. Pavlov, Th. Henning, R. Lenzen, et al. LAM Marseille F K. Dohlen, M. Langlois (now Lyon), et al. ESO, Garching, M. Kasper, M. Downing, S. Deires, N. Hubin, et al. LESIA, Meudon, F A. Boccaletti, et al. ONERA, F T. Fusco et al. INAF-Padova, I A. Baruffolo, R. Gratton, S. Desidera, et al. Obs. de Geneve, CH F. Wildi, S. Udry, et al. 1. Why polarimetry? 2. Polarimetric concept for SPHERE/ZIMPOL 3. Outlook to EPOL / E-ELT Planet Finder

Why polarimetry? Reflected light from planets is polarized Jupiter in blue light p > 40 % at poles p ~ 5-10 % at equator p ~ 19 % integrated Jupiter in red light p > 40% at poles p < 5% at equator p ~ 11% integrated at the poles: - haze scattering at equator: - cloud reflection - thin layer of Rayleigh scattering

Why polarimetry? Reflected light from disks is polarized

If not, simulate! simulated PSF log(counts) photon noise level planet signal PSF basic problem: planet much fainter than residual PSF halo! differential technique: (speckle rejection) reflection from planets and disks produce a polarization signal on top of the unpolarized PSF from the central star Why polarimetry? Differential technique for detecting planets

Polarimetry with VLT / SPHERE ZIMPOL (Zurich Imaging Polarimeter) FoV (detector): 3.5 x 3.5 arcsec; resolution of 15 mas at 600 nm wavelength range nm filters: broad-band R,I, …; narrow band CH 4, KI…; line filters, Hα, OI…. Polarimetric sensitivity SPHERE Extreme AO system (9 mag star), Strehl up to 50% for nm coronagraphy (Lyot coronagraphs, 4QPM) IRDIS: polarimetry in the 1 – 2.2 µm range Goals: polarization contrast limit for bright stars detect planets around nearby stars d < 5pc characterize scattered light from circumstellar disks your high resolution and high contrast polarimetric imager at the VLT What about your science?

SPHERE-Design

Jan 2012 Dec 2012

synchronization (kHz) modulator polarizer demodulating CCD detector S(t)I(t) S polarization signal modulated polarization signal modulated intensity signal ZIMPOL: basic polarimetric principle (fast modulation) Advantages: images of two opposite polarization modes are created almost simultaneously modulation faster than seeing variations both images are recorded with same pixel both images are subject to almost exactly the same aberrations integration over many modulation cycles without readout (low RON)

Polarimeter implementation SPHERE mutual constraints: polarimeter should not affect the AO AO should not destroy polarization 1. telescope polarization compensated with rotating λ/2-plate and M4 mirror 2. instrument polarization calibrated with pol. switch 3. Instrument polarization compensated by inclined plate telescope AO adaptive optics near-IR instruments WFS wave front sensor coronagraph BS pol.-switch λ>0.95μ λ<0.9μ imaging polarimeter Nasmyth focus derotator compensator plate

HWP1 Pol.Cal. HWP2 M4 derotator BS pol.comp. Pol.Cal filters FLC Mod. HWPZ Polarimetric Details

SPHERE/ZIMPOL concept Telescope polarization corrected with HWP1 and mirror M4 HWP2 is used – as polarization switch to separate instrument polarization and sky+telescope polarization – to orientate the selected polarization into the correct direction for the derotator The derotator polarization is corrected with a (co-rotating) polarization compensator HWPz rotates the polarization into the ZIMPOL system ZIMPOL performs the high precision measurement

ZIMPOL/SPHERE calibration plan for (``user-friendly) data reduction pipeline Science Calibrations – Astrometric calibrations – Photometric calibrations – Telescope polarization calibrations (unpolarized standard stars) – Telescope zero point polarization angle (polarized standard stars) Technical Calibrations – Bias – Dark – Intensity flat (bad pixels) – Sky flat – Modulation/demodulation efficiency Instrument monitoring – AO+C polarization efficiency – AO+C instrument polarization – AO+C polarization crosstalk – ZIMPOL modulation crosstalk – Telescope crosstalk

Lets think big: ZIMPOL-SPHERE/VLT is just a test for EPOL-EPICS/E-ELT

ZIMPOL EPOL optimum concept HWP near intermediate focus - rotates polarization from sky into the direction (p or s) of M4, M5 - polarization switch (+/--) and allows a polarimetric (self)-calibration of system HWP near Nasmyh focus - rotates sky and telescope polarization into direction of instrument plane No M6 - else variable cross talks are introduced - else switch calibration is compromised no M6

stellar magn. fields 38% GRB / SN 22% AGN scatt. 17% CS scatt. 9% sol. system other 7% FORS1 72% EFOSC 14% NACO SOFI other 5% 3% Publications survey 2000 to 2006 ( Schmid 2007, ESO calibration workshop) on polarimetric observations with ESO telescopes: 58 refereed papers Distribution of polarimetric papers with respect to: scientific topic instrument used Message: Only well designed polarimetric systems produce a lot of science

Thank you