Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi.

Slides:



Advertisements
Similar presentations
Electric forces and electric fields
Advertisements

Boiling heat transfer of liquid nitrogen in the presence of electric fields P Wang, P L Lewin, D J Swaffield and G Chen University of Southampton, Southampton,
Constituent Composition (wt%)
Cable Properties Properties of the nerve, axon, cell body and dendrite affect the distance and speed of membrane potential Passive conduction properties.
Capacitance and Dielectrics In mechanics we are used to devices which store potential energy Is there a way to store electric potential energy Capacitors.
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 2: Dielectric Structure Refinement.
Hybrid Materials & POSS
Polyethylene Nanocomposites – A Solution Blending Approach
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 3: Phenomenological Impedances.
Dielectric Thermal Analysis Duncan Price IPTME, Loughborough University © Copyright: (2006)
Dielectro-Rheological Device (DRD)
Dielectric properties of magnetic fluid F. HERCHL, P. KOPČANSKÝ, M. TIMKO M. KONERACKÁ, I. POTOČOVÁ, Institute of Experimental Physics Slovak Academy of.
Lecture 19 Maxwell equations E: electric field intensity
Capacitance Physics Department, New York City College of Technology.
FCI1 CHAPTER OUTLINE 1. Definition of Capacitance 2. Calculating Capacitance 3. Combinations of Capacitors 4. Energy Stored in a Charged Capacitor.
Capacitance.
▪The PCM-epoxi nano-composite materials obtained as cross-linked three dimensional structures are attractive for space heating and cooling of buildings.
NanotechnologyNanoscience Modeling and Simulation Develop models of nanomaterials processing and predict bulk properties of materials that contain nanomaterials.
1/39 Passive components and circuits - CCP Lecture 11.
Resin + 3 wt.-% of type 8 Resin + 1 wt.-% of type 3 Resin + 3 wt.-% of type 9 Conclusions A detailed electrical characterization, made making use of sophisticated.
Increased surface area on nanoparticles
Study on Effective Thermal Conduction of the Nanoparticle Suspension Calvin Hong Li Department of Mechanical, Aerospace & Nuclear Engineering Rensselaer.
Preparation and characterization of metal nanoparticles supported on polymeric composites M. Sisani 1, U. Costantino 1, F. Costantino 1, F. Presciutti.
Chapter 17 Electric Potential. Objectives: The students will be able to: Given the dimensions, distance between the plates, and the dielectric constant.
Piezoelectric Equations and Constants
Physics for Bioscience (Part II) Electricity Magnetism Waves Sound Optics by Dr. Chittakorn polyon Department of Physics, Faculty of Science,
ELEC 3105 Basic EM and Power Engineering Conductivity / Resistivity Current Flow Resistance Capacitance Boundary conditions.
Chemistry is… …a systematic study (science) …the study of the composition and properties of matter. …the study of the reactivity of substances …the study.
Affordable Bio-polymer Matrix Composites for Lightweight Vehicular Structures Automotive News Conference June 13-15, 2005 Wynfrey Hotel, Birmingham, AL.
5 장 Dielectrics and Insulators. Preface ‘ Ceramic dielectrics and insulators ’ is a wide-ranging and complex topic embracing many types of ceramic, physical.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
MANUFACTURING TECHNOLOGY Week 1 Introduction to Manufacuring.
Capacitance, Dielectrics, Electric Energy Storage
Electrostatics #5 Capacitance. Capacitance I. Define capacitance and a capacitor: Capacitance is defined as the ability of an object to store charge.
The Effect of Nanofiller on Polyethylene System K. Y. Lau 1, 2, *, A. S. Vaughan 1, G. Chen 1 and I. L. Hosier 1 1 University of Southampton, Southampton,
REFLECTIONS ON NANOTECHNOLOGY APPLIED TO DIELECTRICS IN A CONTEXT OF ELECTROTECHNICAL APPLICATIONS Presented by: Dr Michel Fréchette Senior researcher,
ENGINEERING MATERIALS Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore.
Nanoclay minerals and plastics: tiny particles deliver big impact Suprakas Sinha Ray.
Properties of the bakelite used for standard RPC chambers as a function of the operating temperature F. Bruni – G. Hull – S.M. Mari 4 digital thermometers.
Material Processing of Polystyrene Boron Nitride Nanocomposites Raed Ayoob Supervisor(s): Thomas Andritsch and Alun Vaughan 16 September 2015 Early Career.
M ULTIFUNCTIONAL R IGID P OLYURETHANE N ANOCOMPOSITE F OAM MADE WITH G RAPHENE N ANOPLATELETS 2012 Society of Plastics Engineers Annual Technical Conference.
Ceramic substrate, EDX, Si MappingNonwoven Ceramic substrate S UMMARY Experimental Bead milling and Stirring Coating Drying and Gelation Ceramic porous.
A level Product Design Unit 2
Dynamic Mechanical Properties of MWCNT/CoFe 2 O 4 Reinforced PEEK Composites Wyoming NSF/EPSCoR Undergraduate Research Fellowship, Summer 2010 Undergraduate.
CERAMICS. Introduction ~ keramikos - burnt stuff in Greek. ~ Ceramics are inorganic and non-metallic materials that are commonly electrical and thermal.
The development of nano-particle reinforced polymer composites is presently seen as one of the most promising approaches in the field of future engineering.
Miral Shah Course: Thermodynamics and kinetics of confined fluids
05 July 2016Foot Note1 Materials and Structures, Technologies for Space Celeste Pereira, Ph.D. in Chemical Engineering.
Glenn Research Center at Lewis Field Emerging Materials Technologies for Aerospace Power and Propulsion Ajay Misra Glenn Research Center Presented at Advanced.
CH5715 Energy Conversion and Storage
E. JACQUELOT1, J. GALY1, JF. GERARD1, A. ROCHE1, E. FOUISSAC2, E
Submitted by Y.Venkata Ramireddy M.Sc Chemistry
Advances in Electroluminescent Devices with Barium Titanate Particles
By ADITYA NAGARAJ MASKERI 1DS07EE006
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Low Temperature Impedance of Multiferroic BiMnO3 Thin Films
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
M. Mahmoodi1, M. Arjmand2, U. Sundararaj2 and S. S. Park1
ELEC-E8409 HIGH VOLTAGE ENGINEERING
STUDY on carbon micro/nanoparticals influence on electrical properties of carbon fiber reinforced epoxy matrix composites Blanka Tomková, Jana Novotná,
Electrical Engineering Department, SGSITS, Indore, INDIA
IEEE Aerospace Conference
Materiale electrotehnice noi
Lecture 20 Today Conductors Resistance Dielectrics
Capacitance and RC Circuits
Capacitor A device that stores energy by maintaining a separation between positive and negative charge. Can store electric charge / energy in the electric.
OVERVIEW OF FINITE ELEMENT METHOD
General Physics L14_capacitance A device storing electrical energy
Surface Engineering By Israa Faisal University of Al-Qadisiyah
Chapter 26 Examples 26.1 parallel-plate capacitor with air between the plates has an area A = 2.00 x m 2 and a plate separation d = 1.00 mm. Find.
Presentation transcript:

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Structura disciplinei CapitolulConţinutul 1Fenomene in materialele electrotehnice 1.1. Conductia electrica 1.2. Polarizarea electrica 1.3. Magnetizarea materialelor 1.4. Pierderi in materialele electrotehnice 2Materiale conductoare noi 2.1. Materiale conductoare clasice 2.2. Materiale supraconductoare 2.3. Conductori organici si nanotuburi de carbon 2.4. Materiale pentru realizarea de memristori 2.5. Aplicatii moderne ale materialelor conductoare 3Materiale semiconductoare noi 3.1. Materiale semiconductoare clasice 3.2. Polimeri semiconductori 3.3. Materiale semiconductoare nanostructurate 3.4. Aplicatii moderne (celule solare, microprocesoare de inalta frecventa, ecrane TV, laseri) 4Materiale dielectrice noi 4.1. Evolutia materialelor dielectrice 4.2. Straturi subtiri 4.3. Nanodielectrici 4.4. Oxizi metalici 4.5. Aplicatii 5Materiale magnetice noi 5.1. Evolutia materialelor magnetice 5.2. Materiale magnetice amorfe 5.3. Materiale magnetice nanostructurate (nanocristaline, organice) 5.4. Fire si filme subtiri din materiale magnetice 5.5. Aplicatii moderne (miezuri magnetice, memorii, hard-discuri, carduri magnetice)

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1994: Symbolic birth of Nanodielectrics: John Lewis published the paper “Nanometric Dielectrics” in IEEE Transactions on Dielectrics and Electrical Insulation Nanodielectrics ≈ Polymer nanocomposites with dielectric properties: polymers (PA, PE, PP, PVC, epoxy resins, silicone rubbers) + nano-fillers (LS, SiO 2, TiO 2, Al 2 O 3 ) * 1 to 100 nm in size, * 1 to 10 wt% in content * homogeneously dispersed in the polymer matrix. 2002: First experimental data on nanometric dielectrics : Articles in the field reported that  nano-filler addition has the potential of improving the electrical, mechanical and thermal properties as compared to the neat polymers;  polymer nanocomposites are increasingly desirable as coatings, structural and packaging materials in automobile, civil, aerospace and electrical engineering : Project CEEX- PoNaDIP

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Design & Realizing Characterization Modeling Structure-Property Relationship Steps of the research

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Design & realizing Research at UPB-ELMAT:  14 combinations polymer – nanofiller  Plane samples 10 X 10 cm 2, thickness ≤ 1 mm  Nanofillers:1 to 100 nm in size, 1 to 10 wt% in content, and homogeneously dispersed in the polymer matrix POLYMER thermoplastic thermoset NANOFILLER organic inorganic

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Design & realizing Nanocomposites investigated  PP, PVC and LDPE with SiO 2 nanoparticles of 15 nm diameter  PP, PVC and LDPE with TiO 2 nanoparticles of 15 nm diameter  PP, PVC and LDPE with Al 2 O 3 nanoparticles of 40 nm diameter  nanofillers content: 2, 5 and 10 wt%.  Manufacturing by direct mixing method  Samples for electrical tests: plaques of square shape (10 x 10 cm 2 ) having the thickness of 0.5 mm. Installation for nanocomposite manufacturing

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Nanostructure SEM at ICECHIM LDPE - SiO 2 Characterization

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Characterization Electrical properties Dielectric Spectroscopy at UPB/ELMAT  real part of the permittivity ( )  loss tangent (tan δ)  dielectric spectroscopy: Novocontrol ALPHA-A Analyzer (3) in combination with an Active Sample Cell ZGS (4) and a Temperature Control System Novotherm (5)  frequency range – 10 6 Hz

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for PP nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for PVC nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for LDPE nanocomposites with Al 2 O 3, SiO 2 and TiO 2 fillers at T = 300 K

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Dielectric Spectroscopy at UPB/ELMAT Results for LDPE - Al 2 O 3 nanocomposites, for different filler concentration, at T = 300 K

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Characterization Electrical properties Absorption-Resorption Currents at UPB/ELMAT Resistivity  : Keithley 6517 Electrometer in combination Keithley 8009 Test Fixture

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Absorption-Resorption Currents at UPB/ELMAT Characterization

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrical properties Resistivity of LDPE nanocomposites at UPB/ELMAT Characterization Material Relative volume resistivity at 10 V Relative volume reisistivity at 500 V Unfilled LDPE 11 LDPE with 5 wt% nano-SiO LDPE with 5 wt% nano-Al 2 O LDPE with 5 wt% nano-TiO

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Characterization Mechanical properties at ICECHIM  LDPE – SiO 2 and LDPE – Al 2 O 3 nanocomposites  According to ISO 527 on specimens type IB (5 specimens for each test) with 50 mm/min for tensile strength and 2 mm/min for modulus of elasticity.

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Ideas multi-core model (Tanaka) Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 3D Model nanoparticle matrix elementary capacitor Sample features: - thickness 1 mm - diameter of the nanoparticle 40 nm - thickness if the interface 10 nm - filler content 5% - relative permittivities: nanoparticle/interface/matrix = 10/6/2.2 interface Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Electrostatic field div (  grad V) = 0 V – electric scalar potential  – electric permittivity Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Computational domain – in FLUX 3D Main data of the numerical model: - dimension of the elementary cube 120 nm along each axis - nanoparticle diameter 40 nm - thickness of the interface 10 nm - concentration of nanoparticles 5% - relative electric permittivities: nanoparticle/interface/matrix = 10/6/2.2 - applied voltage 0.02 V Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Descretization mesh - finite element method Size of the mesh: nodes volume finite elements -- tethrahedral elements Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Computation of the equivalent permittivity 1) Computation of the electric energy stored in the material samples: 2) Computation of the capacitance of the elementar capacitor by using two different methods: 3) Evaluation of the equivalent rel. electric permittivity  r eq : Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results Electric scalar potential – color map Without nanoparticles With nanoparticles Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results Electric field strength – color map Without nanoparticles With nanoparticles Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Parametric study filler content fc diameter of the nanoparticle dn thickness of the interface ti relative permittivity of the polymer matrix  rm relative permittivity of the interface  ri relative permittivity of the nanofiller  rn Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. interface permittivity  re = f(  ri ) fc = 5% dn = 40 nm ti = 10 nm  rm = 2.2  rn = 10  ri = 3; 4; 5; 6; 7; 8 Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. the thickness of the interface layer  re = f(ti) fc = 5% dn = 40 nm ti = 5; 10; 15; 20 nm  vi = 0  rm = 2.2  rn = 10  ri = 4 Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. the diameter of the nanoparticle  re = f(dn) fc = 5% dn = 10; 20; 30; 40; 50 nm ti = 10 nm  rm = 2.2  rn = 10  ri = 4 Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Numerical results equivalent permittivity vs. nanoparticle permittivity  re = f(  rn ) fc = 5% dn = 40 nm ti = 10 nm  rm = 2.2  rn = 4; 10  ri = 2.2 Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Particle agglomeration Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Particle agglomeration + isolated particles Modeling Numerical model at UPB/ELMAT

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici 1.Polymer nanocomposites as dielectrics 2.Characterisation: nanostructure, electrical & mecanical properties, thermal stability 3.Numerical modeling of nanodielectrics 4.Possible applications of polymer nanocomposites in Electrical Engineering Nanodielectrici

Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Nanodielectrici Nanocomposite applications in Electrical engineering at ETN-EE  Manufacturing and testing of coil holders  Selected materials: LDPE + Al 2 O 3 and LDPE + SiO 2 with 2% filler content.  Coil holders made from selected nanocomposites have better behaviour as compared with those from the neat polymer (dielectric strength, mecanical properties and, obviously, flame retardancy)