Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.

Slides:



Advertisements
Similar presentations
Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.
Advertisements

Magnetic Chaos and Transport Working Group Proposed Plans for Center Research P.W. Terry Leonid Malyshkin Center for Magnetic Self-Organization in Laboratory.
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
P.W. Terry K.W. Smith University of Wisconsin-Madison Outline
Proposals for Probing Basic Magnetofluid Turbulence of Relevance to Laboratory and Astrophysical Plasmas Magnetic Chaos and Transport Working Group Center.
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Turbulent transport of magnetic fields Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Pulsar radio wave dispersion, intermittency, and kinetic Alfvén wave turbulence Paul Terry Stas Boldyrev.
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Dissipation in Force-Free Astrophysical Plasmas Hui Li (Los Alamos National Lab) Radio lobe formation and relaxation Dynamical magnetic dissipation in.
Plans for Dynamo Research Presented by F. Cattaneo, S. Prager.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
The solar dynamo(s) Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Chicago 2003.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
MHD Dynamos in the Lab and Dynamos Beyond MHD. The lab plasma dynamo does Generate current locally Increase toroidal magnetic flux Conserve magnetic helicity.
Anomalous Ion Heating Status and Research Plan
General Meeting Madison, August 4-6, 2004 Plans and Progress of Magnetic Helicity Conservation and Transport H. Ji for participants of the Center for Magnetic.
Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
SOLAR WIND TURBULENCE; WAVE DISSIPATION AT ELECTRON SCALE WAVELENGTHS S. Peter Gary Space Science Institute Boulder, CO Meeting on Solar Wind Turbulence.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
The UW Plasma Physics Group Clint Sprott, Paul Terry, Ellen Zweibel, Stas Boldyrev, Dalton Schnack, Cary Forest, Stewart Prager Presented to Introductory.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS S. Peter Gary,
Magnetic Structures in Electron-scale Reconnection Domain
“Physics at the End of the Galactic Cosmic-Ray Spectrum” Aspen, CO 4/28/05 Diffusive Shock Acceleration of High-Energy Cosmic Rays The origin of the very-highest-energy.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Turbulent Reconnection in a Partially Ionized Gas Cracow October 2008 Alex Lazarian (U. Wisconsin) Jungyeon Cho (Chungnam U.) ApJ 603, (2004)
Particle Acceleration by MHD turbulence in Solar flares Huirong Yan (CITA) Collaborator: Alex Lazarian (UW-Madison)
Shock Acceleration at an Interplanetary Shock: A Focused Transport Approach J. A. le Roux Institute of Geophysics & Planetary Physics University of California.
Plasma Dynamos UCLA January 5th 2009 Steve Cowley, UKAEA Culham and Imperial Thanks to Alex Schekochihin, Russell Kulsrud, Greg Hammett and Mark Rosin.
Center for Multi-scale Plasma Dynamics. Bill Dorland, Maryland.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
Interplanetary Scintillations and the Acceleration of the Solar Wind Steven R. Spangler …. University of Iowa.
Origin, Evolution, and Signatures of Cosmological Magnetic Fields, Nordita, June 2015 Evolution of magnetic fields in large scale anisotropic MHD flows.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
On the Comparison of Magnetofluid Turbulence in Laboratory and Astrophysical Plasmas P.W. Terry University of Wisconsin-Madison Ackn: Weixing Ding, Lionello.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Governing equations: Navier-Stokes equations, Two-dimensional shallow-water equations, Saint-Venant equations, compressible water hammer flow equations.
Summary of MHD Topics 2nd IAEA Technical Meeting Theory of Plasma Instabilities Howard Wilson.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Turbulent Dynamos: How I learned to ignore kinematic dynamo theory MFUV 2015 With Amir Jafari and Ben Jackel.
Physics of turbulence at small scales Turbulence is a property of the flow not the fluid. 1. Can only be described statistically. 2. Dissipates energy.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
Simulations of turbulent plasma heating by powerful electron beams Timofeev I.V., Terekhov A.V.
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
MHD Turbulence driven by low frequency waves and reflection from inhomogeneities: Theory, simulation and application to coronal heating W H Matthaeus Bartol.
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
May 23, 2006SINS meeting Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti University of Wisconsin.
Spectrum and small-scale structures in MHD turbulence Joanne Mason, CMSO/University of Chicago Stanislav Boldyrev, CMSO/University of Madison at Wisconsin.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Computational Astrophysics: Magnetic Fields and Charged Particle Dynamics 8-dec-2008.
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
Qualifying Exam Jonathan Carroll-Nellenback Physics & Astronomy University of Rochester Turbulence in Molecular Clouds.
Introduction to the Turbulence Models
Modeling Astrophysical Turbulence
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Characteristics of Turbulence:
Presentation transcript:

Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics I.Understand the dynamics of spectral energy transfer in the inertial range of MHD turbulence (covered by P.Terry) Decorrelation times, anisotropy, and spectra Role of turbulence drive in experiments (large, small scale) Common characteristics: ISM, experimental plasmas Role of Hall effects, reconnection, anisotropies from fields and flows 2.Understand transport of energy and particles resulting from magnetic fluctuations (covered by L.Malyshkin) Role of magnetic fluctuation properties: stochasticity, spectral composition, resonances Role of magnetic field in thermal conduction for galaxy cluster collapse Cosmic ray transport in galactic magnetic field

Presentation overview Understanding the dynamics of spectral energy transfer in the inertial range of MHD turbulence – Three tasks: 1. Characterize turbulence properties in experiment; relation to reconnection and large scale flows and fields 2. Analytic theory and computation: understand properties, model experiment, bridge between expt and astrophysics 3. Effects of Hall terms and rotation Update on some recent work: Role of turbulence/wave interactions on spectrum anisotropy and inverse energy transfer

Use experiments to tackle key unanswered questions about the nature of magnetic turbulence Does mean magnetic field contribute to turbulent decorrelation? Advective nonlinearity Magnetic nonlinearity What is the turbulent spectrum? k -5/3, k -3/2, k -2, something else? What is the anisotropy of spectrum? None, k || =k 2/3, k || =0, something else? What governs energy transfer direction? ( relevant to dynamo, heating) Global invariants, wave dynamics, other? What happens at resonances? (relevant to ion heating, reconnection) Reversal surface, fluctuations in reconnection 1. Characterize turbulent properties in expt

To make connections to astrophysics, experiment must assess inertial range or account for instability and dissipative effects Determine if there is an inertial range Measure turbulence up to hundreds of kHz and characterize turbulent quantities Investigate turbulence for collisional plasmas, compare with less collisional plasmas In inertial range look at: spectrum fall off dependence on mean field anisotropy cascade directions 1. Characterize turbulent properties in expt

Measure turbulent decorrelation to determine role of mean field and anisotropy Devise appropriate techniques to discriminate against linear tearing instability Computational modeling Tearing suppression (ext current drive) Isolation of inertial scales Use bispectral techniques to isolate turbulent decorrelation rate in expt measurement, Mean field scaling, variation with nonlinearity, relation to fluid straining 1. Characterize turbulent properties in expt

Study resonance regions for insight on role of turbulence in other center topics Measure turbulence at resonant surfaces, especially m=0 Resonant surface: k B=0 MST: Anisotropy, spectrum dominated by resonant fluctuations Does this change in smaller scales? Reconnection for stochastic B vs. k =0 Effect of m=0 fluctuations on momentum transport, ion heating Measure structure and fluctuations in reconnection layer in MRX Is reconnection turbulent? What conditions? Role of fluctuations in heating, acceleration assoc with reconnection 1. Characterize turbulent properties in expt

Application of experimental observations to astrophysics requires theory and modeling Derive predictions for observable quantities in MST inertial range Spectrum: role of B 0 (k 0), p, drive, magnetic shear Anisotropy All components of fluctuating flow, field Resonant damping, viscous damping rates Investigate coupling of small scale magnetic turb with large scale tearing fluctuations using DEBS Role of magnetic shear, cross over from driven to inertial range, spectrum slope, dissipation, role of small-scale instability 2. Analytic theory and computation -3/2: Alfvén -2: kinetic Alfvén -5/3

Use new analysis techniques to extract crucial underlying quantities like decorrelation time Derive bispectral formulas for turbulent decorrelation in MHD w/wo mean magnetic field, tearing instability Must treat multiple fields, multiple nonlinearities (recently available) Require modeling of effect of tearing instability on turb decorrelation Examine computationally spectra, decorrelation time, effective turbulent diffusion (FLASH+hydro, or new code) Use special diagnostics (bispectra, infinitesimal response, energy transfer) Develop technique for 3D velocity measurement of interstellar turbulence; test with experiment Infinitesimal Response 2. Analytic theory and computation

Borrow from fluid turbulence understanding to probe MHD anisotropy and cascade Fluids: Rotation breaks symmetry introduces anisotropy anisotropic inertia waves Inverse energy transfer by 3D motions (wave anisotropy, not global invariants, determine transfer direction) large scale structure with wave anisotropy MHD: Lorentz force Coriolis force Anisotropic Alfvén waves MHD anisotropy has anisotropy of Alfvén wave Investigate anisotropy and spectral transfer in MHD using fluid paradigm Evaluate role of helicity conservation when wave anisotropy operating 2. Analytic theory and computation

Study compressible MHD for application to astrophysics Previous work: ISM, molecular clouds New: role of compressibility, intermittency in scaling of scintillation pulse width Gaussian statistics for dn/dr gives Lévy statistics for dn/dr gives Consistent with ray scattering from randomly oriented shock discontinuities Investigate intermittency in compressible MHD Formulate statistics of passively advected scalar in compressible MHD 2. Analytic theory and computation

How magnetic turbulence is dissipated and effect of dissipation is important is astrophysics and lab expts (Relevant to ion heating, reconnection, interpretation of expt spectra) Investigate spectrum and intermittency in turbulence with Braginskii viscosity Anisotropic Braginskii viscosity can have significant effect on spectrum, dynamo, intermittency given anisotropy of field Apply to primordial dynamo theory Investigate role of compressibility in dissipation of magnetic turbulence 2. Analytic theory and computation

Investigation of decaying turbulence and disk coronae provides comparison points to lab plasmas Understand and characterize B-field unfolding in decaying turbulence When forcing is intermittent, turbulence decays Magnetogenesis theories, forcing by supernova shocks Question: on what scales does turbulence survive during unwinding? Relate to relaxation after sawtooth event in MST Formulate MRI theory, dimensional analysis, and spectral transfer analysis for accretion disk coronae Parallels characterization of turbulence in laboratory plasmas (MST) MRI Tearing instability: compare, contrast coupling to smaller scale turbulence, Reynolds stress, Maxwell stress 2. Analytic theory and computation

Study of Hall effects and rotation makes contact with reconnection, angular momentum transport Calculate properties of turbulence in model with Hall physics, in unbounded and bounded geometries Relevant to evolution of fluctuations in reconnection (MRX) Contrast with turbulence of Alfvén, kinetic Alfvén waves (k > ) New types of wave motion, new time scales What does it do to spectra, anisotropy, decorrelation? Examine effect of rotation on anisotropies, spectral energy transfer in MHD using wave/turbulence interaction paradigm Relevant to MRI, large scales in rotating systems Interplay of Alfvén waves, rotational modes Examine types of anisotropies, transport 3. Hall effects and rotation

In plasma, can energy cascade in inverse direction when dynamical invariants indicate forward cascade? Density gradient driven microturbulence (drift waves) Simpler than MHD – study inverse transfer (relevant to dynamo, flow drive) and anisotropy in plasmas 2D System: Linear Behavior: Anisotropic waves: k y V D (k y B, n - symmetry breaking ) Wave are unstable: ~ << Global anisotropy: zonal flows reflecting wave anisotropy – when k y =0 Update on recent work

Interaction of linear waves and nonlinearity alters energy transfer, isotropy to produce global anisotropy Properties of nonlinearity: v n Isotropic Forward cascade (breaks enstrophy invariance, energy conserved) Waves dominate at large scales Wave dispersion in turbulent decorrelation induces inverse, anisotropic transfer via near-resonant triads, excitation of damped eigenmode Update on recent work

Analytic theory describes inverse energy transfer, yields condition for near resonant triads Weak turbulence theory fails to explain inverse transfer when invariants dictate forward transfer (rotating turbulence) Strong turbulence theory based on statistical closure Self-consistent specification of nonlinear damping (not prescribed) Asymptotic expansion in k y V D << 1 unfolds recursion Examine energy transfer rate for rough antisymmetry: Transfer direction change when k k MHD shares many common features: anisotropic waves, anisotropy reflecting wave anisotropy, advective nonlinearity, multiple eigenmodes Does common physics drive inverse energy transfer, global anisotropy? Update on recent work

Conclusion: there are a number of projects in magnetic turbulence linking lab and astrophysics Small scale turbulence in MST - interstellar turbulence Turbulence at resonant layer - reconnection, momentum transport Test 3D velocity measurement technique for interstellar turbulence on experiment Tearing driven turbulence versus MRI driven turbulence B-unfolding in decaying turbulence