Hall-MHD simulations of counter- helicity spheromak merging by E. Belova PPPL October 6, 2005 CMSO General Meeting.

Slides:



Advertisements
Similar presentations
Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.
Advertisements

NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
NONLINEAR COMPUTATION OF LABORATORY DYNAMOS DALTON D. SCHNACK Center for Energy and Space Science Science Applications International Corp. San Diego, CA.
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Exploring reconnection physics in SSPX and NIMROD Lawrence Livermore National Laboratory Livermore, CA Center for Magnetic Self Organization La Jolla,
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
Workshop on Magnetic Self-Organization NSF Center meeting, Aug 4-6, 2004 Michael Brown C. D. Cothran, J. Fung, A. O Murchadha, Z. Michielli, M. Chang Swarthmore.
Experimental Tests of Two-Fluid Relaxation D. Craig and MST Team University of Wisconsin – Madison General Meeting of the Center for Magnetic Self-Organization.
Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart.
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
CMSO 2005 Simulation of Gallium experiment * § Aleksandr Obabko Center for Magnetic-Self Organization Department of Astronomy and Astrophysics.
Some New Data From FRC Experiment on Relaxation For discussions at Hall-Dynamo and Related Physics meeting CMSO June 10-11, 2004 at PPPL Guo et al, PRL.
Progress and Plans on Magnetic Reconnection for CMSO M. Yamada, C. Hegna, E. Zweibel For General meeting for CMSO August 4, Recent progress and.
Results from Magnetic Reconnection Experiment And Possible Application to Solar B program For Solar B Science meeting, Kyoto, Japan November 8-11, 2005.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
Magnetic Structures in Electron-scale Reconnection Domain
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC.
Physics of fusion power
Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università.
Forced reconnection studies in the MAST spherical tokamak M P Gryaznevich 1, A Sykes 1, K G McClements 1 T Yamada 2, Y Hayashi 2, R Imazawa 2, Y Ono 2.
Magnetic Reconnection in Multi-Fluid Plasmas Michael Shay – Univ. of Maryland.
Non-disruptive MHD Dynamics in Inward-shifted LHD Configurations 1.Introduction 2.RMHD simulation 3.DNS of full 3D MHD 4. Summary MIURA, H., ICHIGUCHI,
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
Boundaries, shocks, and discontinuities. How discontinuities form Often due to “wave steepening” Example in ordinary fluid: –V s 2 = dP/d  m –P/  
Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
Experimental Study of Magnetic Reconnection and Dynamics of Plasma Flare Arc in MRX Masaaki Yamada August SHINE Meeting at Nova Scotia Center.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Valentina Zharkova 1 and Olga Khabarova Department of Mathematics, University of Bradford, Bradford BD7 1DP, UK ( ) 2.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Two problems with gas discharges 1.Anomalous skin depth in ICPs 2.Electron diffusion across magnetic fields Problem 1: Density does not peak near the.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Team Report on integration of FSAM to SWMF and on FSAM simulations of convective dynamo and emerging flux in the solar convective envelope Yuhong Fan and.
1 Importance of two-fluid in helicity injection current drive.
Kinetic MHD Simulation in Tokamaks H. Naitou, J.-N. Leboeuf †, H. Nagahara, T. Kobayashi, M. Yagi ‡, T. Matsumoto*, S. Tokuda* Joint Meeting of US-Japan.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Numerical study of flow instability between two cylinders in 2D case V. V. Denisenko Institute for Aided Design RAS.
Pulsations in the Magnetosphere Jacob Schneider David Sibeck.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
Ergodic heat transport analysis in non-aligned coordinate systems S. Günter, K. Lackner, Q. Yu IPP Garching Problems with non-aligned coordinates? Description.
Fast Reconnection in High-Lundquist- Number Plasmas Due to Secondary Tearing Instabilities A.Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers Center.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Evolution of the poloidal Alfven waves in 3D dipole geometry Jiwon Choi and Dong-Hun Lee School of Space Research, Kyung Hee University 5 th East-Asia.
Stability of magnetic fields in stars Vienna 11 th September 2007 Jonathan Braithwaite CITA, Toronto.
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
Abstract We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions. The flux tube starts to evolve slowly(quasi-statically)
Lecture 20 Today Conductors Resistance Dielectrics
The Physics of the Collisionless Diffusion Region
Presentation transcript:

Hall-MHD simulations of counter- helicity spheromak merging by E. Belova PPPL October 6, 2005 CMSO General Meeting

Model and Parameters Simulations are done using the HYM code. Very simple physical model: resistive MHD equations plus the Hall term in the Ohms law (the only 2-fluid effect which is included). Zero electron inertia is assumed. Hyperresistivity is used to stabilize Hall effects on small scales. HYM code uses (Z x R x φ)= 385 x 127 x 16 grid. Length is normalized to ion skin depth: d i =1, Z=R=0.2. Perfectly conducting boundary conditions. Numerical scheme: 4 th -order finite difference, explicit. Dimensionless parameters: η=0.001, µ=0.002, d i /R=0.03.

Hall-MHD simulations with different B φ polarity Normal B φ Reversed B φ ψ ψ R Z R Z In HMHD simulations, the X-point position shifts outward by about 2-3d i when direction of toroidal field is reversed (t= 5 t A ).

Hall-MHD simulations with different B φ polarity. J R (normal B φ )J R (reversed B φ ) RR V -shape current contours/\ -shape current contours ZZ t= 5 t A Difference in radial current contours.

Hall-MHD simulations with different Bφ polarity. J φ (normal B φ )J φ (reversed B φ ) R t= 5 t A Toroidal current contours

Hall-MHD simulations with different B φ polarity. Velocity profiles t= 10 t A Normal B φ V R (R) V φ (R) R Reversed B φ V R (R) V φ (R) R

MHD Results (no Hall Effect) Ψ (reversed B φ ) Z J R (reversed B φ ) R V R (R) (reversed B φ ) R Ψ (normal B φ ) J R (normal B φ ) (normal B φ ) V R (R) Z

3D plots of magnetic field lines (HMHD) R Z φ Normal B φ directionReversed B φ direction Field lines near x-point are bent by the electron flows. The local field line structure explains the observed shift in x-point position, and the ion flow profiles. t= 10 t A

3D plots of magnetic field lines (MHD) For comparison, field line bending is not seen in the MHD simulations – reconnection occurs in a plane => current and flow profiles are approximately symmetric (up-down), and there is no radial shift in X-point position. t= 10 t A Normal B φ directionReversed B φ direction

Same effect in 2D HMHD reconnection results in quadrupole field VeVe In 2D reconnection everything remains symmetric (no guide field). In counter-helicity reconnection, X-point shifts radialy because the reconnection plane is tilted relative to R-Z plane. It shifts inward or outward depending on the sign of radial component of V e. The X-point shift should also depend on B φ /B pol ratio.

Time evolution/reconnection rates in HMHD and MHD simulations (S=1000, d i /R=0.03) MHD HMHD HMHD(R) Time evolution of toroidal field energy (and reconnection rates) are very similar in MHD and Hall-MHD simulations and for different initial field polarity –> it is determined by global (ion) dynamics, and does not depend on the local field structure near the X-point. t/t A

Time evolution/reconnection rates in MHD simulations (S= ,000) Driven reconnection with η-independent peak reconnection rate for range of η>2·10 -4 Reconnection slows down for smaller η due to magnetic field pressure build up and sloshing, similar to island coalescence problem [Biskamp80 and others]. t / t A η=10 -3 η=2·10 -4 η=5·10 -4 η=5·10 -5 η=10 -4 η=10 -3 η=2·10 -4 η=5·10 -4 η=5·10 -5 η=10 -4 ExEx Reconnection rate

Summary In the counter-helicity spheromak merging new signatures of Hall reconnection have been identified: - inward/outward radial shift of the x-point - nearly unidirectional radial ion flow (positive/negative) - V or /\ -shaped radial current contours - dependence of the above signatures on the B φ polarity - dependence on B φ /B pol ratio (not studied yet) These effects are related to generation of a quadrupole field in Hall- MHD. For the same set of parameters (S=1000, d i /R=0.03), the global dynamics/reconnection rates are not modified significantly by the Hall effects and/or by B φ polarity.

Hall-MHD simulations of counter-helicity spheromak merging E. Belova, PPPL In counter-helicity spheromak merging simulations new signatures of Hall reconnection have been identified: - inward/outward radial shift of the x-point - nearly unidirectional radial ion flow (positive/negative) - V or /\ -shaped radial current contours - dependence of the above signatures on the B φ polarity These effects are related to generation of a quadrupole field in Hall-MHD. Similar effects are observed in MRX. Normal B φ Reversed B φ ψ ψ