§ 4.7 - 4.8 Adams’ Method; Webster’s Method Adams’ Method  The Idea: We will use the Jefferson’s concept of modified divisors, but instead of rounding.

Slides:



Advertisements
Similar presentations
Mathematics of Congressional Apportionment David Housman Goshen College.
Advertisements

How are the number of seats per state assigned by the Constitution?
The Mathematics of Elections
Chapter 15: Apportionment Part 4: Apportionment History.
Appendix 1 The Huntington - Hill Method. The Huntington-Hill method is easily compared to Webster’s method, although the way we round up or down is quite.
+ Apportionment Ch. 14 Finite Math. + The Apportionment Problem An apportionment problem is to round a set of fractions so that their sum is maintained.
The Apportionment Problem Section 9.1. Objectives: 1. Understand and illustrate the Alabama paradox. 2. Understand and illustrate the population paradox.
The Mathematics of Sharing
§ 4.3 Hamilton’s Method A MERICA (THE BOOK) § 4.3 Hamilton’s Method “Quipped a jubilant Hamilton, ‘The only way it could fail is if one party gained control.
1 How the Founding Fathers designed algorithms for assigning fair representation for the new United States of America How Will the Next Congress Look?
§ The Apportionment Problem; Basic Concepts “The baby legislature would be cut in half, creating a unique bicameral structure, consisting of.
4.1 Apportionment Problems
Other Paradoxes and Apportionment Methods
Chapter 14: Apportionment Lesson Plan
Fairness in Apportionment How do you decide whether a method for apportioning representatives is fair?
Chapter 15 Section 4 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Chapter 15: Apportionment
Math for Liberal Studies.  The US Senate has 100 members: two for each state  In the US House of Representatives, states are represented based on population.
Discrete Math CHAPTER FOUR 4.1
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 3 - Slide Election Theory Apportionment Methods.
Chapter 15: Apportionment Part 1: Introduction. Apportionment To "apportion" means to divide and assign in proportion according to some plan. An apportionment.
Chapter 14: Apportionment Lesson Plan
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.3 Apportionment Methods.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 14 Voting and Apportionment.
Apportionment Schemes Dan Villarreal MATH Tuesday, Sept. 15, 2009.
Chapter 15: Apportionment
Slide 15-1 Copyright © 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION.
Agenda Goals Info sheet Overview Apportionment Activity Begin Lesson 9.1- Apportionment  Hamilton Method  Adjusting a list HW Guide.
Other Apportionment Algorithms and Paradoxes. NC Standard Course of Study Competency Goal 2: The learner will analyze data and apply probability concepts.
The Webster and Hill Method for Apportionment Both are like the Jefferson method.
Chapter 15: Apportionment Part 7: Which Method is Best? Paradoxes of Apportionment and Balinski & Young’s Impossibility Theorem.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 4 The Mathematics of Apportionment 4.1Apportionment Problems 4.2Hamilton’s.
1 CS110: Introduction to Computer Science Homework Project #1 Due to Blackboard Dropbox on October 18 11:59PM For this Homework you will implement the.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 4 The Mathematics of Apportionment 4.1Apportionment Problems 4.2Hamilton’s.
Huntington-Hill Method Why was this method chosen to apportion the House?
Classwork: Please read p in text p. 144 (1, 11, 19a, 23) Homework (Day 14): p. 144 (2, 12, 20b, 24)
1 Message to the user... The most effective way to use a PowerPoint slide show is to go to “SLIDE SHOW” on the top of the toolbar, and choose “VIEW SHOW”
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 14 Voting and Apportionment.
Chapter 4: The Mathematics of Sharing 4.6 The Quota Rule and Apportionment Paradoxes.
§ The Population and New-States Paradoxes; Jefferson’s Method.
Chapter 15: Apportionment Part 5: Webster’s Method.
Apportionment There are two critical elements in the dictionary definition of the word apportion : (1) We are dividing and assigning things, and (2) we.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 4 The Mathematics of Apportionment 4.1Apportionment Problems 4.2Hamilton’s.
2.4 More Apportionment Algorithms and Paradoxes Ms. Magné Discrete Math.
1 Excursions in Modern Mathematics Sixth Edition Peter Tannenbaum.
Chapter 4: The Mathematics of Apportionment. "Representatives...shall be apportioned among the several States, which may be included within this Union,
Independent Practice Problem There are 15 scholarships to be apportioned among 231 English majors, 502 History majors, and 355 Psychology majors. How would.
1 How our Founding Father’s designed algorithms for assigning fair representation for the new United States of America How Will the Next Election Be Decided?
Apportionment Apportionment means distribution or allotment in proper shares. (related to “Fair Division”)
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 4 The Mathematics of Apportionment 4.1Apportionment Problems 4.2Hamilton’s.
Apportionment So now you are beginning to see why the method of apportionment was so concerning to the founding fathers……it begs to question, why not just.
AND.
Excursions in Modern Mathematics Sixth Edition
Chapter 14: Apportionment Lesson Plan
Chapter 14: Apportionment Lesson Plan
Math 132: Foundations of Mathematics
Chapter 15: Apportionment
Chapter 15: Apportionment
Section 15.4 Flaws of the Apportionment Methods
Section 15.3 Apportionment Methods
§ The Apportionment Problem; Basic Concepts
HAMILTON – JEFFERSON - WEBSTER
Warm Up – 3/7 - Friday Find the Hamilton Apportionment for 200 seats.
Chapter 4—The Mathematics of Apportionment
Excursions in Modern Mathematics Sixth Edition
4 The Mathematics of Apportionment
Warm Up – 3/10 - Monday State A B C D E Population (millions)
Quiz.
Warm Up – 3/13 - Thursday Apportion the classes using Adams Method
Flaws of the Apportionment Methods
Presentation transcript:

§ Adams’ Method; Webster’s Method

Adams’ Method  The Idea: We will use the Jefferson’s concept of modified divisors, but instead of rounding the modified quotas down we will round them up.

PLANETANDO RIA EARTHTELLA R VULCA N TOTAL POPULATI ON in billions STD. QUOTA MODIFIED QUOTA POP.  D FINAL APPORTIO NMENT Example: THE PLANETS OF ANDORIA, EARTH, TELLAR AND VULCAN HAVE DECIDED TO FORM A UNITED FEDERATION OF PLANETS. THE RULING BODY OF THIS GOVERNMENT WILL BE THE 139 MEMBER FEDERATION COUNCIL. APPORTION THE SEATS USING ADAM’S METHOD.

PLANETANDO RIA EARTHTELLA R VULCA N TOTAL POPULATI ON in billions STD. QUOTA MODIFIED QUOTA POP.  FINAL APPORTIO NMENT Example: THE PLANETS OF ANDORIA, EARTH, TELLAR AND VULCAN HAVE DECIDED TO FORM A UNITED FEDERATION OF PLANETS. THE RULING BODY OF THIS GOVERNMENT WILL BE THE 139 MEMBER FEDERATION COUNCIL. APPORTION THE SEATS USING ADAM’S METHOD.

Adams’ Method  Step 1. Find a modified divisor D such that when each state’s modified quota is rounded upward (this number is the upper modified quota) the total is the exact number of seats to be apportioned.  Step 2. Apportion to each state its modified upper quota.

Adams’ Method: Finding the Modified Divisor Start: Guess D ( D < SD ). End Make D larger. Make D smaller 2. Round Numbers Up. Computatio n: 1. Divide State Populations by D. 2. Round Numbers Up. 3. Add numbers. Let total = T. T < M T = M T > M

Webster’s Method  The Idea: We will use an approach similar to both Jefferson’s and Adams’ methods, but we will round the modified quotas conventionally.

PLANETANDO RIA EARTHTELLA R VULCA N TOTAL POPULATI ON in billions STD. QUOTA MODIFIED QUOTA POP.  D FINAL APPORTIO NMENT Example: THE PLANETS OF ANDORIA, EARTH, TELLAR AND VULCAN HAVE DECIDED TO FORM A UNITED FEDERATION OF PLANETS. THE RULING BODY OF THIS GOVERNMENT WILL BE THE 139 MEMBER FEDERATION COUNCIL. APPORTION THE SEATS USING WEBSTER’S METHOD.

PLANETANDO RIA EARTHTELLA R VULCA N TOTAL POPULATI ON in billions STD. QUOTA MODIFIED QUOTA POP.  FINAL APPORTIO NMENT Example: THE PLANETS OF ANDORIA, EARTH, TELLAR AND VULCAN HAVE DECIDED TO FORM A UNITED FEDERATION OF PLANETS. THE RULING BODY OF THIS GOVERNMENT WILL BE THE 139 MEMBER FEDERATION COUNCIL. APPORTION THE SEATS USING WEBSTER’S METHOD.

Webster’s Method  Step 1. Find a modified divisor D such that when each state’s modified quota is rounded conventionally (this number is the modified quota) the total is the exact number of seats to be apportioned.  Step 2. Apportion to each state its modified quota.

Webster’s Method: Finding the Modified Divisor Start: Guess D ( D < SD ). End Make D larger. Make D smaller 2. Round Numbers Convention ally. Computatio n: 1. Divide State Populations by D. 2. Round Numbers Convention ally. 3. Add numbers. Let total = T. T < M T = M T > M

A Final Comment: The Balinsky-Young Impossibility Theorem  Like Jefferson’s Method, the methods of both Adams and Webster are free of paradox. Unfortunately, they both also imitate Jefferson’s Method in that they violate the quota rule.  In 1980, Michel Balinski and H. Peyton Young provided mathematical proof that any apportionment method that does not produce paradox violates the quota rule and that any method that satisfies the quota rule must produce a paradox.

A Final Comment: The Balinsky-Young Impossibility Theorem  In other words, ‘fairness’ and proportional representation are incompatible ideas.