CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept. 2006 : astro-ph/0601594.

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Abstract Observed CMB polarization maps can be split into gradient-like (E) and curl- like (B) modes. I review the details of this decomposition, and the.
Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Power spectrum of the dark ages Antony Lewis Institute of Astronomy, Cambridge Work with Anthony Challinor (IoA, DAMTP); astro-ph/
Future 21cm surveys and non-Gaussianity Antony Lewis Institute of Astronomy, Cambridge work with Anthony Challinor & Richard Shaw.
Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge Review ref: Lewis, Challinor, Phys. Rep: astro-ph/
Weak Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge
Institute of Astronomy, Cambridge
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Lecture 2 Temperature anisotropies cont: what we can learn CMB polarisation: what it is and what we can learn.
Dominic Galliano Supervisors: Rob Crittenden & Kazuya Koyama YITP, Kyoto, Monday 21 st March 2011.
Planck 2013 results, implications for cosmology
Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Lloyd Knox & Alan Peel University of California, Davis.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
July 7, 2008SLAC Annual Program ReviewPage 1 Weak Lensing of The Faint Source Correlation Function Eric Morganson KIPAC.
Cosmology After WMAP David Spergel Cambridge December 17, 2007.
K.S. Dawson, W.L. Holzapfel, E.D. Reese University of California at Berkeley, Berkeley, CA J.E. Carlstrom, S.J. LaRoque, D. Nagai University of Chicago,
CMB as a physics laboratory
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Constraining Galactic Halos with the SZ-effect
The CMB and Neutrinos. We can all measure the CMB T CMB = \ K CMB approx 1% of TV noise! 400 photons/cc at 0.28 eV/cc.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Weak lensing generated by vector perturbations and detectability of cosmic strings Daisuke Yamauchi ICRR, U. Tokyo 2012/9/13 China DY,
Yanchuan Cai ( 蔡彦川 ) Shaun Cole, Adrian Jenkins, Carlos Frenk Institute for Computational Cosmology Durham University May 31, 2008, NDHU, Taiwan ISW Cross-Correlation.
CMB as a dark energy probe Carlo Baccigalupi. Outline  Fighting against a cosmological constant  Parametrizing cosmic acceleration  The CMB role in.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmology with Gravitaional Lensing
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
the National Radio Astronomy Observatory – Socorro, NM
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Primordial fluctuations 20  Isotropic 3K background. The most perfect blackbody we know Dipole (3.4 mK). Our motion relative to CMB.
The effects of the complex mass distribution of clusters on weak lensing cluster surveys Zuhui Fan Dept. of Astronomy, Peking University.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
The Pursuit of primordial non-Gaussianity in the galaxy bispectrum and galaxy-galaxy, galaxy CMB weak lensing Donghui Jeong Texas Cosmology Center and.
Bwdem – 06/04/2005doing cosmology with galaxy clusters Cosmology with galaxy clusters: testing the evolution of dark energy Raul Abramo – Instituto de.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
The Cosmic Microwave Background
Gravitational Lensing
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
CMB, lensing, and non-Gaussianities
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Towards the first detection using SPT polarisation
Testing Primordial non-Gaussianities in CMB Anisotropies
Cosmological constraints from μE cross correlations
12th Marcel Grossman Meeting,
Some issues in cluster cosmology
Laurence Perotto; LAL Orsay
Abstract Observed CMB polarization maps can be split into gradient-like (E) and curl-like (B) modes. I review the details of this decomposition, and the.
David Spergel, Paul Bode and Chris Hirata
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
Lecture 5: Matter Dominated Universe
C M B S e c o n d a r y A n i s o t r o p i e s a t
CMB Anisotropy 이준호 류주영 박시헌.
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept : astro-ph/ Lewis & King, PRD 2006 : astro-ph/

Weak lensing of the CMB Last scattering surface Inhomogeneous universe - photons deflected Observer

Lensing order of magnitudes β Newtonian argument: β = 2 Ψ General Relativity: β = 4 Ψ Ψ Potentials linear and approx Gaussian: Ψ ~ 2 x β ~ Characteristic size from peak of matter power spectrum ~ 300Mpc Comoving distance to last scattering surface ~ MPc pass through ~50 lumps assume uncorrelated total deflection ~ 50 1/2 x ~ 2 arcminutes (neglects angular factors, correlation, etc.) (β << 1)

So why does it matter? 2arcmin: ell ~ o n small scales CMB is very smooth so lensing dominates the linear signal Deflection angles coherent over 300/(14000/2) ~ 2 ° - comparable to CMB scales - expect 2arcmin/60arcmin ~ 3% effect on main CMB acoustic peaks

LensPix sky simulation code: Full calculation: deflection angle on sky given in terms of lensing potential Lensed temperature given by Lewis 2005, astro-ph/

Lensed temperature C l Analogous results for CMB polarization. Essentially exact to order of weak lensing – very well understood effect on power spectra. Non-linear P k 0.2% on TT, ~5% on BB Lewis, Challinor Phys. Rept : astro-ph/ andlinear in lensing potential power spectrum Full-sky fully non-perturbative generalization of method by Seljak 1996

Lensing effect on CMB temperature power spectrum: smoothing of acoustic peaks; small scale power Full-sky calculation accurate to 0.1%: Fortran code CAMB (

Polarization lensing: C x and C E Important ~ 10% smoothing effect

Polarization lensing: C B Nearly white BB spectrum on large scales Lensing effect can be largely subtracted if only scalar modes + lensing present, but approximate and complicated (especially posterior statistics). Hirata, Seljak : astro-ph/ , Okamoto, Hu: astro-ph/ Lewis, Challinor : astro-ph/

Current 95% indirect limits for LCDM given WMAP+2dF+HST Polarization power spectra Lewis, Challinor : astro-ph/ ; Lewis Moriond 2006

Non-Gaussianity Unlensed CMB expected to be close to Gaussian With lensing: For a FIXED lensing field, lensed field also Gaussian For VARYING lensing field, lensed field is non-Gaussian Three point function: Bispectrum - Zero unless correlation Large scale signal from ISW-induced T- Ψ correlation Small scale signal from non-linear SZ – Ψ correlation … Zaldarriaga astro-ph/ , Goldberg&Spergel, etc…

Trispectrum: Connected four-point c - Depends on deflection angle and temperature power spectra - Easily measurable for accurate ell > 1000 observations Other signatures - correlated hot-spot ellipticities - Higher n-point functions - Polarization non-Gaussianity Zaldarriaga astro-ph/ ; Hu astro-ph/

Confusion with primordial non-Gaussianity? 1-point function - SZ-lensing correlation can dominate on very small scales - On larger scales oscillatory primordial signal should be easily distinguishable with Planck if large enough Komatsu: astro-ph/ ISW-lensing correlation only significant on very large scales Bispectrum - lensing only moves points around, so distribution at a point Gaussian - But complicated by beam effects Kesden, Cooray, Kamionkowski: astro-ph/

Trispectrum (4-point) Basic inflation: - most signal in long thin quadrilaterals Lensing: - broader distribution, less signal in thin shapes Can only detect inflation signal from cosmic variance if f NL >~ 20 Komatsu: astro-ph/ Hu: astro-ph/ No analysis of relative shape-dependence from e.g. curvaton?? Lensing probably not main problem for flat quadrilaterals if single-field non-Gaussianity

Cluster CMB lensing e.g. to constrain cosmology via number counts GALAXY CLUSTER Last scattering surface What we see Following: Seljak, Zaldarriaga, Dodelson, Vale, Holder, etc. CMB very smooth on small scales: approximately a gradient Lewis & King, astro-ph/ degrees Need sensitive ~ arcminute resolution observations

UnlensedLensedDifference RMS gradient ~ 13 μK / arcmin deflection from cluster ~ 1 arcmin Lensing signal ~ 10 μK BUT: depends on CMB gradient behind a given cluster can compute likelihood of given lens (e.g. NFW parameters) essentially exactly Unlensed CMB unknown, but statistics well understood (background CMB Gaussian) :

Unlensed T+Q+U Difference after cluster lensing Add polarization observations? Less sample variance – but signal ~10x smaller: need 10x lower noise Note: E and B equally useful on these scales; gradient could be either

Complications Temperature - Thermal SZ, dust, etc. (frequency subtractable) - Kinetic SZ (big problem?) - Moving lens effect (velocity Rees-Sciama, dipole-like) - Background Doppler signals - Other lenses Polarization - Quadrupole scattering (< 0.1μK) - Re-scattered thermal SZ (freq) - Kinetic SZ (higher order) - Other lenses Generally much cleaner

Is CMB lensing better than galaxy lensing? Assume background galaxy shapes random before lensing Measure ellipticity after lensing by cluster Lensing On average ellipticity measures reduced shear Shear is γ ab = Constrain cluster parameters from predicted shear Assume numerous systematics negligible…

CMB polarization only (0.07 μK arcmin noise) Optimistic Futuristic CMB polarization lensing vs galaxy lensing Less massive case: M = 2 x h -1 M sun, c=5 Galaxies (500 gal/arcmin 2 )

Summary Weak lensing of the CMB very important for precision cosmology - changes power spectra - potential confusion with primordial gravitational waves for r <~ Non-Gaussian signal, but well known and probably not main problem Cluster lensing of CMB - Temperature lensing difficult because of confusions - CMB polarisation lensing needs high sensitivity but potentially useful at high redshift - galaxy lensing expected to be much better for low redshift clusters - CMB lensing has quite different systematics to galaxy lensing

Planck (2007+) parameter constraint simulation (neglect non-Gaussianity of lensed field) Important effect, but using lensed CMB power spectrum gets right answer Lewis 2005, astro-ph/ Parameters can be improved using BB/lensing reconstruction; non-Gaussianity important in the future; c.f. Wayne Hus talk

Full calculation: Lensed temperature depends on deflection angle: Lensing Potential Deflection angle on sky given in terms of lensing potential

Toy model: spherically symmetric NFW cluster M 200 ~ h -1 M sun c ~ 5, z ~ 1 (r v ~ 1.6Mpc) Deflection ~ 0.7 arcmin (approximate lens as thin, constrain projected density profile) assume we know where centre is 2