Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.

Slides:



Advertisements
Similar presentations
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Advertisements

Prajwal Mohanmurthy, Mississippi State University with Dr. Dipangkar Dutta, Mississippi State University Medium Energy Physics Group Spin-Light Polarimeter.
Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
Stanford – Mar , 2005 LCWS-2005 Norbert Meyners Upstream Polarimetry with 4-Magnet Chicane 1 Introduction & Overview O Compton polarimetry basics.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
27 June 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit ILC BDS 27 June 06.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
Prajwal T. Mohan Murthy Laboratory for Nuclear Science, MIT νDM Group Spin-Light Polarimeter for the Electron Ion Collider EIC Users Meeting 2014 Jun 2014.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
19 July 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit (via Eric Torrence) VLCW06 19 July 06.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.
Polarisation monitoring Sabine Riemann, Andreas Schälicke, Andriy Ushakov (DESY) Positron Source Group Meeting, October, 2009 University of Durham.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
EIC Compton detector update October 24 th 2014 Alexandre Camsonne.
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
ILC MDI workshop January 6-8, 2004 PEP-II IR M. Sullivan 1 Interaction Region of PEP-II M. Sullivan for the ILC MDI workshop January 6-8, 2005.
E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Taikan SUEHARA et al., LCWS2007 & DESY, 2007/06/01 R&D Status of ATF2 IP Beam Size Monitor (Shintake Monitor) Taikan SUEHARA, H.Yoda, M.Oroku,
Deuteron polarimetry from 1.0 to 1.5 GeV/c Ed Stephenson, IUCF EDM discussion April 14, 2006 Based on work from: France:POMME B. Bonin et al. Nucl. Inst.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
Luminosity at  collider Marco Zanetti (MIT) 1. Intro,  colliders basics Luminosity at  colliders Sapphire simulation Alternative approaches Luminosity.
JLEIC MDI Update Michael Sullivan Apr 4, 2017.
Polarization of final electrons/positrons during multiple Compton
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Luminosity Measurement using BHABHA events
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
The Interaction Region
NC Accelerator Structures
Progress with Spin Tracking in GEANT4
Energy calibration issues for FCC-ee I. Koop, BINP, Novosibirsk
Final Focus Synchrotron Radiation
High precision measurement of the beam energy at VEPP-4M collider by Yury Tikhonov KEDR&VEPP-4M collaboration Budker INP, Novosibirsk Outlook Introduction.
Pol. positron generation scheme for ILC
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Capture and Transmission of polarized positrons from a Compton Scheme
Polarized Positrons at Jefferson Lab
CEPC Injector positron source
ILC Baseline Design: Physics with Polarized Positrons
IR/MDI requirements for the EIC
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3 rd LEPOL 2 Outline Low Energy Polarimeter (LEPOL) Task within EUROTeV WP4 (Polarized Positron Source) - Why & where do we need it ? - Available processes  Polarimeter options - Our suggestion: Bhabha polarimeter - Backup: Compton Transmission Polarimeter - Summary

Beijing, Feb 3 rd LEPOL 3 Measurement of positron polarization at the source  Control of polarization transport  Optimization of positron beam polarization  Commissioning Desired: non-destructive method with accuracy at few percent level

Beijing, Feb 3 rd LEPOL 4 e+ Polarisation Measurement near the source Polarization measurement  measure asymmetries ! Find a process with sensitivity to longitudinal polarization of positrons (electrons) good signal/background ratio significant asymmetry In the energy range 30 MeV … 5000 MeV Desired: non-destructive easy to handle fast (short measuring time) e+ beam parameters e + / bunch N e+ 2·10 10 bunches / pulse2820 Rep. Rate R5 Hz Energy E30 – 5000 MeV Energy spread ΔE/E10 % Normalized emittance ε*~ 3.6 cm rad Beam size σ x,y ~ 1 cm

Beijing, Feb 3 rd LEPOL 5 Considered Processes Compton Scattering (ex.: SLC, HERA) –Laser backscattering on beam –Preferred polarimeter option at IP –Not an option for the LEPOL (very small rates due to large beam size) –after damping rings beam size smaller  this option is under study by Tel Aviv U (G. Alexander) –But: very far from source Mott –Transverse polarized positrons –  Mott ~E -4  Moller ~E -2  Bhabha ~E -2  high background at relevant energies

Beijing, Feb 3 rd LEPOL 6 Considered Processes Compton Transmission (ex.: E166, ATF) –Reconversion of e+ to  in target –Polarization dependent transmission of  through magnetized Fe –Small, simple setup –Can deal with poor beam quality –Destructive  Beam absorbed in relatively thick target –Less efficient with increasing beam energy (E < 100 MeV)

Beijing, Feb 3 rd LEPOL 7 Considered Processes Synchrotron radiation (ex.: VEPP-4 storage ring) (S.A. Belomestnykh et al., NIM A 227 (1984) 173 –Transverse polarization needed –Angular asymmetries of synchrotron radiation in damping ring –Relative simple setup –Non-destructive, non intrusive –Very small signal: Asymmetry < –position far from source

Beijing, Feb 3 rd LEPOL 8 Considered Processes Laser Compton Scattering Compton Transmission Experiment Mott Scattering Synchrotron radiation Bhabha/Møller magnetized iron target; e- polarization in Fe: ~7%, angular distribution of scattered particles corresponds to e+ polarisation

Beijing, Feb 3 rd LEPOL 9 Bhabha Polarimetry As Møller polarimeter already widely used (SLAC, VEPP) Cross section: maximal asymmetry at 90°(CMS) ~ 7/9 ≈ 78 % e+ and e- must be polarized Example: P e+ = 80%, P e- = 7% A max ~ 4.4 %

Beijing, Feb 3 rd LEPOL 10 Bhabha Polarimetry Working point: –After pre-acceleration 125 MeV – 400 MeV –First design studies done for 200 MeV Used for simulations: Polarized GEANT4, release 8.2 contact: A. Schälicke and collaborateurs,

Beijing, Feb 3 rd LEPOL 11 Studies for a Bhabha Polarimeter E beam = 200 MeV  E beam = ±10% 2·10 8 positrons ang. spread =±0.5 o 80  m Fe target P Fe = 100% P e+ = 100% electrons(+) electrons(-) positrons photons after Bhabha scattering

Beijing, Feb 3 rd LEPOL 12 Regions of maximum asymmetry

Beijing, Feb 3 rd LEPOL 13 Bhabha Polarimeter 50MeV < E < 150 MeV 20MeV < E < 150 MeV 0.04 <  < <  < 0.120

Beijing, Feb 3 rd LEPOL 14 Bhabha Polarimeter

Beijing, Feb 3 rd LEPOL 15 Bhabha Polarimeter Significance - Energy range: 50 – 150 MeV 20 – 150 MeV cosθ: 0.04 – 0.12 rad 0.04 – 0.21 rad

Beijing, Feb 3 rd LEPOL 16 Photon distributions cosθ: 0.08 – 0.4 rad no energy cut

Beijing, Feb 3 rd LEPOL 17 Bhabha Polarimetry Best significance using asymmetries of scattered Bhabha electrons Working point: –After pre-acceleration and separation of e+ beam: 120 MeV – 400 MeV Asymmetries: –Detection of scattered Bhabha electrons is sufficient –Detection of scattered Bhabha positrons for checks –Use of photons (annihilation in flight) Conclusion for layout Separation of energy range  spectrometer Separation of e+ and e-  magnetic field (spectrometer Separation of angular range  masks Target

Beijing, Feb 3 rd LEPOL 18 ~5m e+ ~2.5m e+ Angular range large enough  no bend needed to kick out the scattered e-,e+,  Detector size: O(40*60 cm2) signal rate: O(10 9 ) per second for 80  m Fe foil detector mask, shielding exit window (?) spectrometer higher energy, lower  lower energy, higher  electrons positrons photons +background Side view top view

Beijing, Feb 3 rd LEPOL 19 Magnetized Iron Target Heating of the target -> Magnetization decreases –Simulation for 30 µm –Cooling by radiation –T C (Fe) = 1039 K; melting point 1808 K Ongoing considerations on target layout –ΔT  ΔM  ΔP  ΔAsy –Magnetization (monitoring, tilted target?) –Cooling in real Multiple scattering  additional angular spread of ≤4% Target temperature vs. time Magnetisation vs. Temperature

Beijing, Feb 3 rd LEPOL 20 Compton Transmission Method ? Destructive ! Working point: E e + < 100 MeV ideal after capture section O(~30 MeV)  Dimensions O(1m)  Experiences from E166, ATF  Thick Target (1 to 3 X 0 ), with high energy deposition O(~kW)  Small asymmetries O(<1%) at higher energies Example: E beam 30 MeV, P e- =7.92%, Target: 2X 0 W, Absorber 15cm Fe A(P e+ =30%) ~ 0.4% A(P e+ =60%) ~ 0.8%

Beijing, Feb 3 rd LEPOL 21 Summary Recommended for polarimetry near the source – but not yet tested: Bhabha polarimeter at ~400 MeV In principle, the Bhabha polarimeter could work during ILC operation Backup possibility: Compton Transmission After DR: Compton polarimeter To be discussed: - where will we need to check the e+ pol? - when? Commissioning/ operation  type of polarimeter Our plan: Finalize the design study, think about target tests, suggest a polarimeter design LEPOL Collaboration: DESY: K. Laihem, S. Riemann, A. Schälicke, P. Schüler HU Berlin: R. Dollan, T. Lohse NC PHEP Minsk: P. Starovoitov Tel Aviv U: G. Alexander