Interactive Virtual Relighting and Remodelling of Real Scenes C. Loscos 1, MC. Frasson 1,2,G. Drettakis 1, B. Walter 1, X. Granier 1, P. Poulin 2 (1) iMAGIS*

Slides:



Advertisements
Similar presentations
Computer graphics & visualization Global Illumination Effects.
Advertisements

Zhao Dong 1, Jan Kautz 2, Christian Theobalt 3 Hans-Peter Seidel 1 Interactive Global Illumination Using Implicit Visibility 1 MPI Informatik Germany 2.
Interactive Rendering using the Render Cache Bruce Walter, George Drettakis iMAGIS*-GRAVIR/IMAG-INRIA Steven Parker University of Utah *iMAGIS is a joint.
Chunhui Yao 1 Bin Wang 1 Bin Chan 2 Junhai Yong 1 Jean-Claude Paul 3,1 1 Tsinghua University, China 2 The University of Hong Kong, China 3 INRIA, France.
Photon Mapping. How did I use it 10 years ago? Why might you want to use it tomorrow?
ATEC Procedural Animation Introduction to Procedural Methods in 3D Computer Animation Dr. Midori Kitagawa.
Rendering with Environment Maps Jaroslav Křivánek, KSVI, MFF UK
Paper Presentation - An Efficient GPU-based Approach for Interactive Global Illumination- Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, Hujun Bao Presenter.
Real-Time Rendering Paper Presentation Imperfect Shadow Maps for Efficient Computation of Indirect Illumination T. Ritschel T. Grosch M. H. Kim H.-P. Seidel.
Copyright  Philipp Slusallek Cs fall IBR: Model-based Methods Philipp Slusallek.
Photon Tracing with Arbitrary Materials Patrick Yau.
Measurement, Inverse Rendering COMS , Lecture 4.
1 Image-Based Visual Hulls Paper by Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler and Leonard McMillan [
Final Gathering on GPU Toshiya Hachisuka University of Tokyo Introduction Producing global illumination image without any noise.
Flexible Bump Map Capture From Video James A. Paterson and Andrew W. Fitzgibbon University of Oxford Calibration Requirement:
Everything on Global Illumination Xavier Granier - IMAGER/UBC.
The Radiosity Method Donald Fong February 10, 2004.
Paper by Alexander Keller
CSCE 641: Computer Graphics Image-based Rendering Jinxiang Chai.
Convergence of vision and graphics Jitendra Malik University of California at Berkeley Jitendra Malik University of California at Berkeley.
Face Relighting with Radiance Environment Maps Zhen Wen 1, Zicheng Liu 2, Thomas Huang 1 Beckman Institute 1 University of Illinois Urbana, IL61801, USA.
Computer Graphics Inf4/MSc Computer Graphics Lecture Notes #16 Image-Based Lighting.
Research & Innovation 1 An Industry Perspective on VVG Research Oliver Grau BBC Research & Innovation VVG SUMMER SCHOOL '07.
Ray Tracing and Photon Mapping on GPUs Tim PurcellStanford / NVIDIA.
Realtime Caustics using Distributed Photon Mapping Johannes Günther Ingo Wald * Philipp Slusallek Computer Graphics Group Saarland University ( * now at.
Chapter 10: Computer Graphics
Image-Based Rendering from a Single Image Kim Sang Hoon Samuel Boivin – Andre Gagalowicz INRIA.
-Global Illumination Techniques
09/11/03CS679 - Fall Copyright Univ. of Wisconsin Last Time Graphics Pipeline Texturing Overview Cubic Environment Mapping.
Interactively Modeling with Photogrammetry Pierre Poulin Mathieu Ouimet Marie-Claude Frasson Dép. Informatique et recherche opérationnelle Université de.
Penumbra Deep Shadow Maps Jean-Francois St-Amour, LIGUM – Université de Montreal Eric Paquette, LESIA - ETS Pierre Poulin, LIGUM – Université de Montreal.
A Fast Shadow Algorithm for Area Light Sources Using Backprojection George Drettakis Eugene Fiume Department of Computer Science University of Toronto,
Global Illumination with a Virtual Light Field Mel Slater Jesper Mortensen Pankaj Khanna Insu Yu Dept of Computer Science University College London
1 Photon-driven Irradiance Cache J. BrouillatP. GautronK. Bouatouch INRIA RennesUniversity of Rennes1.
Silicon Graphics, Inc. The Holodeck Interactive Ray Cache Greg Ward, Exponent Maryann Simmons, UCB.
1 Implicit Visibility and Antiradiance for Interactive Global Illumination Carsten Dachsbacher 1, Marc Stamminger 2, George Drettakis 1, Frédo Durand 3.
Real-time Indirect Lighting Using Clustering Visibility Zhao, Tobias, Thorsten, Jan* *University College London.
Using Interactive Ray Tracing for Interactive Global Illumination Computer Graphics Lab Saarland University, Germany
Introduction to Radiosity Geometry Group Discussion Session Jiajian (John) Chen 9/10/2007.
Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography.
Image-Based Rendering of Diffuse, Specular and Glossy Surfaces from a Single Image Samuel Boivin and André Gagalowicz MIRAGES Project.
Interactive Point-based Modeling of Complex Objects from Images Pierre Poulin (a,b) Marc Stamminger (a,c) François Duranleau (b) Marie-Claude Frasson (a)
Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs Computer Science Division University of California at Berkeley.
Rendering Synthetic Objects into Real- World Scenes by Paul Debevec SIGGRAPH 98 Conference Presented By Justin N. Rogers for Advanced Comp Graphics Spring.
Interreflections : The Inverse Problem Lecture #12 Thanks to Shree Nayar, Seitz et al, Levoy et al, David Kriegman.
Efficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting Romain Pacanowski and M. Raynaud X. Granier P. Reuter C. Schlick P. Poulin.
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
University of Montreal & iMAGIS A Light Hierarchy for Fast Rendering of Scenes with Many Lights E. Paquette, P. Poulin, and G. Drettakis.
Graphics Graphics Korea University cgvr.korea.ac.kr 1 Surface Rendering Methods 고려대학교 컴퓨터 그래픽스 연구실.
Differential Instant Radiosity for Mixed Reality Martin Knecht, Christoph Traxler, Oliver Mattausch, Werner Purgathofer, Michael Wimmer Institute of Computer.
Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister.
On robust Monte Carlo algorithms for multi-pass global illumination Frank Suykens – De Laet 17 September 2002.
Subject Name: Computer Graphics Subject Code: Textbook: “Computer Graphics”, C Version By Hearn and Baker Credits: 6 1.
Inferring Reflectance Functions from Wavelet Noise Pieter Peers Philip Dutré Pieter Peers Philip Dutré June 30 th 2005 Department of Computer Science.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Hybrid Algorithms K. H. Ko School of Mechatronics Gwangju Institute.
Pure Path Tracing: the Good and the Bad Path tracing concentrates on important paths only –Those that hit the eye –Those from bright emitters/reflectors.
High Resolution Surface Reconstruction from Overlapping Multiple-Views
Thank you for the introduction
Fast Global Illumination Including Specular Effects Xavier Granier 1 George Drettakis 1 Bruce J. Walter 2 1 iMAGIS -GRAVIR/IMAG-INRIA iMAGIS is a joint.
Controlling Memory Consumption of Hierarchical Radiosity with Clustering iMAGIS -GRAVIR/IMAG-INRIA iMAGIS is a joint project of CNRS/INRIA/UJF/INPG Xavier.
Global Illumination (3) Path Tracing. Overview Light Transport Notation Path Tracing Photon Mapping.
Radiometry of Image Formation Jitendra Malik. A camera creates an image … The image I(x,y) measures how much light is captured at pixel (x,y) We want.
Radiometry of Image Formation Jitendra Malik. What is in an image? The image is an array of brightness values (three arrays for RGB images)
Toward Real-Time Global Illumination. Global Illumination == Offline? Ray Tracing and Radiosity are inherently slow. Speedup possible by: –Brute-force:
Toward Real-Time Global Illumination. Project Ideas Distributed ray tracing Extension of the radiosity assignment Translucency (subsurface scattering)
Chapter 10: Computer Graphics
Image Based Modeling and Rendering (PI: Malik)
Visibility Computations
Conservative Visibility Preprocessing using Extended Projections Frédo Durand, George Drettakis, Joëlle Thollot and Claude Puech iMAGIS-GRAVIR/IMAG-INRIA.
Real-time Global Illumination with precomputed probe
Presentation transcript:

Interactive Virtual Relighting and Remodelling of Real Scenes C. Loscos 1, MC. Frasson 1,2,G. Drettakis 1, B. Walter 1, X. Granier 1, P. Poulin 2 (1) iMAGIS* - GRAVIR/IMAG - INRIA Rhône-Alpes * iMAGIS is a joint project of CNRS/INRIA/UJF/INPG * iMAGIS is a joint project of CNRS/INRIA/UJF/INPG (2) Département d ’informatique et de recherche opérationnelle, Université de Montréal Université de Montréal

MAGIS i Motivation Interior design Geometric modificationChanges in lighting

MAGIS i Motivation ü Goal: interactive system simple capture process simple capture process interactive ( ~ 1 sec. per frame) interactive ( ~ 1 sec. per frame) modification of lighting modification of lighting modification of geometry modification of geometry

MAGIS i Motivation ü We have to: create a simple model of the real scene create a simple model of the real scene  geometry  approximate reflectance represent real global illumination represent real global illumination develop interactive methods for modifications develop interactive methods for modifications ü Goal is to be convincing, not highly accurate

MAGIS i Previous Work ü Geometric reconstruction vision methods [Faugeras et al. 97,...] (Realise) vision methods [Faugeras et al. 97,...] (Realise) constraint-based systems [Debevec et al. 96, Poulin et al. 98] constraint-based systems [Debevec et al. 96, Poulin et al. 98] software: Photomodeler, etc. software: Photomodeler, etc. ü Reflectance recovery e.g., [Sato et al. 97, Ward92, Debevec98, Yu et al. 98, etc]. e.g., [Sato et al. 97, Ward92, Debevec98, Yu et al. 98, etc].

MAGIS i Previous Work ü Real-time direct shadows real point light source [State et al. 96] real point light source [State et al. 96] ü Common global illumination non-interactive non-interactive  [Nakamae et al. 86, Fournier et al. 93, Jancène et al. 95, Debevec 98, Yu et al. 98, Yu et al. 99] interactive interactive  [Drettakis et al. 97, Loscos et al. 98]

MAGIS i Algorithm Overview ü Input ü Pre-process ü Interactive modification

MAGIS i Algorithm Overview - Assumptions ü Single viewpoint ü Diffuse assumption ü Lighting: direct lighting: ray casting direct lighting: ray casting indirect lighting: hierarchical radiosity indirect lighting: hierarchical radiosity radiosity = reflectance x ( direct light + indirect light )

MAGIS i Simple Input Process ü Geometric reconstruction several (4-5) images from different viewpoints several (4-5) images from different viewpoints geometric modelling using “Rekon” [Poulin et al. 98] geometric modelling using “Rekon” [Poulin et al. 98] ü Reflectance reconstruction several (5-7) images from a single viewpoint several (5-7) images from a single viewpoint different lighting conditions: single light source at different positions different lighting conditions: single light source at different positions “radiance images” “radiance images”

MAGIS i Input ü Radiance images from single viewpoint combining multiple images reduces artefacts of estimation combining multiple images reduces artefacts of estimation different lighting conditions

MAGIS i Pre-process ü Computation of approximate diffuse reflectance pixel by pixel compute individual reflectance images compute individual reflectance images merge reflectance images using confidence values merge reflectance images using confidence values ü Initialise lighting system data structure data structure hierarchical radiosity system hierarchical radiosity system

MAGIS i Reflectance Computation ü For each radiance image photographreflectance reflectance = radiosity / ( direct light + indirect light )

MAGIS i Confidence Images ü Estimate confidence confidence ~ quality of reflectance estimate confidence ~ quality of reflectance estimate create a confidence image per light source position create a confidence image per light source position ü Begin with confidence = Visibility low in shadow regions low in shadow regions ü Filtering process to remove unwanted effects low for outliers (specular effects, light tripod) low for outliers (specular effects, light tripod)

MAGIS i Merged Reflectance Computation x x avg. reflectanceconfidence merged reflectance

MAGIS i Interactive Modification: Shadow Reprojection ü Direct illumination: pixel by pixel ü Indirect illumination: optimised radiosity solution a pixel Reflectance Indirect lighting Direct lighting

MAGIS i Shadow Re-projection photograph simulated

MAGIS i Add/move/remove object (virtual or real) ü Visible surface changes: pixel by pixel local update project bounding box of dynamic object project bounding box of dynamic object  localise directly affected pixels original object insertion

MAGIS i Add/move/remove object (virtual or real) ü Direct lighting updates: shaft structure localisation of visibility changes (shadows) localisation of visibility changes (shadows) accelerate visibility computation (blocker lists) accelerate visibility computation (blocker lists) original object insertion

MAGIS i Add/move/remove object (virtual or real) ü Indirect illumination computed by a radiosity solution (optimised by the shaft structure) ü Example: moving object Position 1Position 2

MAGIS i Real Object Removal

MAGIS i Removing Real Objects ü Use of the reflectance image (lighting effects removed) to generate new textures reflectance images

MAGIS i Light Source Modification ü Insertion of a virtual light source computation for every pixel computation for every pixel  new form-factors  new visibility ü Indirect illumination: radiosity solution

MAGIS i Lighting Modification Insertion of virtual light Original virtual lighting

MAGIS i Video

MAGIS i Conclusion ü Input data simple to acquire data simple to acquire ü Pre-process data structures optimised for fast updates data structures optimised for fast updates ü Interactive modification add and move virtual objects add and move virtual objects remove real objects remove real objects relighting relighting

MAGIS i Future Work ü Improve reflectance computation use of high dynamic range images (instead of RGB) use of high dynamic range images (instead of RGB) better control of indirect illumination better control of indirect illumination ü Allow motion of real objects ü Faster: parallel computation

MAGIS i Future Work ü Remove restrictions diffuse reflectance [Yu et al. 99] diffuse reflectance [Yu et al. 99] fixed view-point fixed view-point