Preview Lesson Starter Objectives Measuring and Comparing the Volumes of Reacting GasesMeasuring and Comparing the Volumes of Reacting Gases Avogadro’s.

Slides:



Advertisements
Similar presentations
Molecular Composition of Gases. Volume-Mass Relationships of Gases.
Advertisements

Stoich with Gases!. How do we figure out how many particles there are in a gas sample?
Unit 4 Section A In which you will learn about: Molar volume Avogadro’s law Stoichiometry with gases.
Molecular Composition of Gases Volume-Mass Relationships of Gases.
UNIT 2: REVIEW TIER 5 Solve problems using the idea gas law
Avogadro’s Law.
Chapter 11 Gases.
Gases.  Define pressure, give units of pressure, and describe how pressure is measured.  State the standard conditions of temperature and pressure and.
Gases Chapter 10/11 Modern Chemistry
Mullis1 Gay Lussac’s law of combining volumes of gases When gases combine, they combine in simple whole number ratios. These simple numbers are the coefficients.
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 11 Gases Section 1 Gases and Pressure Section.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 11 Gases Section 1 Gases and Pressure Section.
Pressure and Force Pressure (P) is defined as the force per unit area on a surface. Gas pressure is caused by collisions of the gas molecules with each.
Pressure and Force Pressure (P) is defined as the force per unit area on a surface. Gas pressure is caused by collisions of the gas molecules with each.
Molecular Composition of Gases
Chapter 10 & 11 Chemical quantities and Chemical Reactions.
Chapter 11 – Molecular Composition of Gases Volume-Mass Relationships of Gases  Joseph Gay-Lussac, French chemist in the 1800s, found that at constant.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu What do you know? Quiz 1.What will happen to the volume of a container.
Chapter 11: Molecular Composition of Gases
Ch. 11 Molecular Composition of Gases
Gases The Ideal Gas Law.  Objectives  State the ideal gas law  Using the ideal gas law, calculate pressure, volume, temperature, or amount of gas when.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Main AR Standards.
Chemistry Counting Particles too small to see. John Dalton ( ) Proposed Atomic Theory Each element is made up of tiny, indivisible atoms. Different.
Chapter 11 Molecular Composition of Gases. Avogadro’s Law Equal Volumes of Gases at the Same Temperature & Pressure contain the Same Number of “Particles.”
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Chemistry Chapter 11 Molecular Composition of Gases.
Chapter 13 Section 13.2 The Ideal Gas Law.
Gas Volumes and the Ideal Gas Law 11.3 Volumes of Reacting Gases Gay-Lussac’s law of combining volumes of gases – at constant T and P, the V of gaseous.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Main AR Standards.
2Mg (s) + O 2 → 2MgO INTERPRETING A CHEMICAL EQUATION Quantitative Interpretation of Chemical Reactions Stoichiometry is one of the most important topic.
Section 11–3: Stoichiometry of Gases Coach Kelsoe Chemistry Pages 347–350.
Pressure and Force Pressure (P) is defined as the force per unit area on a surface. Gas pressure is caused by collisions of the gas molecules with each.
Molecular Composition of Gases
Ideal Gas Law.
The Ideal Gas Law No gas perfectly obeys all of the gas laws under all conditions. Nevertheless, these assumptions work well for most gases and most conditions.
Preview Lesson Starter Objectives Measuring and Comparing the Volumes of Reacting GasesMeasuring and Comparing the Volumes of Reacting Gases Avogadro’s.
Chapter 11: Molecular Composition of Gases. Sect. 11-1: Volume-Mass Relationships of Gases Gay-Lussac’s Law of combining volumes of gases – at constant.
Chapter 13: Gases. Nature of gases Assumptions of Kinetic-Molecular theory are based on four factors: 1)Number of particles present 2)Temperature 3)Pressure.
Honors Chemistry, Chapter 11 Page 1 Chapter 11 – Molecular Composition of Gases.
Gas volumes and moles PAGE 87 OF INB. Essential Question:  How can 2 liters of Hydrogen react with 1 liter of Oxygen and only produce 2 liters of gas?
When gases react, the coefficients in the balanced chemical equation represent both molar amounts and relative volumes. Section 3: Gas Stoichiometry K.
Preview Lesson Starter Objectives Pressure and Force Dalton’s Law of Partial Pressures Chapter 11.
GAS LAWS ! DALTON, BOYLE, CHARLES, GAY-LUSSAC COMBINED GAS LAWS
Preview Lesson Starter Objectives Pressure and Force Dalton’s Law of Partial Pressures Chapter 11.
Lesson Starter Make a list of gases you already know about. Separate your list into elements, compounds, and mixtures. Be prepared to share your list with.
Section 1 The Kinetic-Molecular Theory of Matter
Chapter 11 Pressure and Force
Gases React in Whole Number Ratios
Gas Laws II.
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Chapter 11 Pressure and Force
Ch. 11: Molecular Composition of Gases
Gas Volumes and the Ideal Gas Law
Gas Laws Unit 9 Chapter 11.
Gas Laws II.
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Gas Laws II.
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Molecular Composition of Gases
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Chapter 11 Preview Lesson Starter Objectives Pressure and Force
Section 3 Gas Volumes and the Ideal Gas Law
Gas Laws II.
How to Use This Presentation
The student is expected to:
Chapter 11 Preview Lesson Starter Objectives
Gas Volumes and Ideal Gas Law
Chapter 11 Gas Volumes and the Ideal Gas Law Section 3.
Chapter 11 Table of Contents Section 1 Gases and Pressure
Presentation transcript:

Preview Lesson Starter Objectives Measuring and Comparing the Volumes of Reacting GasesMeasuring and Comparing the Volumes of Reacting Gases Avogadro’s Law Molar Volume of a Gas Gas Stoichiometry The Ideal Gas Law Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Lesson Starter Write balanced chemical equations for the two chemical reactions indicated below. hydrogen gas + oxygen gas → water vapor (2 liters) (1 liter) (2 liters) hydrogen gas + chlorine gas → hydrogen chloride (1 liter) (1 liter) (2 liters) Compare the balanced equations with the expressions above. What do you notice? Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Objectives State the law of combining volumes. State Avogadro’s law and explain its significance. Define standard molar volume of a gas and use it to calculate gas masses and volumes. State the ideal gas law. Using the ideal gas law, calculate pressure, volume, temperature, or amount of gas when the other three quantities are known. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Measuring and Comparing the Volumes of Reacting Gases In the early 1800s, French chemist Joseph Gay- Lussac observed that 2 L of hydrogen can react with 1 L of oxygen to form 2 L of water vapor. hydrogen gas + oxygen gas → water vapor 2 L (2 volumes) 1 L (1 volume) 2 L (2 volumes) The reaction shows a simple 2:1:2 ratio in the volumes of reactants and products. This same ratio applies to any volume proportions: for example, 2 mL, 1 mL, and 2 mL; or 600 L, 300 L, and 600 L. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Measuring and Comparing the Volumes of Reacting Gases The same simple and definite volume proportions can be observed in other gas reactions. hydrogen gas + chlorine gas → hydrogen chloride gas 1 L (2 volumes) 1 L (1 volume) 2 L (2 volumes) Gay-Lussac’s law of combining volumes of gases states that at constant temperature and pressure, the volumes of gaseous reactants and products can be expressed as ratios of small whole numbers. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Avogadro’s Law In 1811, Amedeo Avogadro explained Gay-Lussac’s law of combining volumes of gases without violating Dalton’s idea of indivisible atoms. Avogadro reasoned that, instead of always being in monatomic form when they combine to form products, gas molecules can contain more than one atom. He also stated an idea known today as Avogadro’s law. The law states that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Avogadro’s law also indicates that gas volume is directly proportional to the amount of gas, at a given temperature and pressure. The equation for this relationship is shown below, where V is the volume, k is a constant, and n is the amount of moles of the gas. V = kn Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Avogadro’s Law, continued

Avogadro’s law applies to the combining volumes in gas reactions, and helped him to deduce chemical formulas in reactions. Dalton had guessed that the formula for water was HO, but Avogadro’s reasoning established that water must contain twice as many H atoms as O atoms because of the volume ratios in which the gases combine: hydrogen gas + oxygen gas → water vapor 2 L (2 volumes) 1 L (1 volume) 2 L (2 volumes) Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Avogadro’s Law, continued

Given Avogadro’s law, the simplest possible chemical formula for a water molecule indicated two hydrogen atoms and one oxygen atom. hydrogen gas + oxygen gas → water vapor (2 volumes) (1 volume) (2 volumes) Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Avogadro’s Law, continued Avogadro’s idea that some gases, such as hydrogen and oxygen, must be diatomic, was thus consistent with Avogadro’s law and a chemical formula for water of H 2 O.

Recall that one mole of a substance contains a number of particles equal to Avogadro’s constant (6.022 × ). example: one mole of oxygen, O 2, contains × diatomic molecules. According to Avogadro’s law, one mole of any gas will occupy the same volume as one mole of any other gas at the same conditions, despite mass differences. The volume occupied by one mole of gas at STP is known as the standard molar volume of a gas, which is L (rounded to 22.4 L). Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Molar Volume of a Gas

Knowing the volume of a gas, you can use the conversion factor 1 mol/22.4 L to find the moles (and therefore also mass) of a given volume of gas at STP. example: at STP, Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Molar Volume of a Gas, continued You can also use the molar volume of a gas to find the volume, at STP, of a known number of moles or a known mass of gas. example: at STP,

Molar Volume of a Gas, continued Sample Problem G a.What volume does mol of gas occupy at STP? b.What quantity of gas, in moles, is contained in 2.21 L at STP? Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Sample Problem G Solution a. Given: mol of gas at STP Unknown: volume of gas Solution: Multiply the amount in moles by the conversion factor,. Chapter 11 Molar Volume of a Gas, continued Section 3 Gas Volumes and the Ideal Gas Law

Sample Problem G Solution, continued b. Given: 2.21 L of gas at STP Unknown: moles of gas Solution: Multiply the volume in liters by the conversion factor,. Chapter 11 Molar Volume of a Gas, continued Section 3 Gas Volumes and the Ideal Gas Law

Gay-Lussac’s law of combining volumes of gases and Avogadro’s law can be applied in calculating the stoichiometry of reactions involving gases. The coefficients in chemical equations of gas reactions reflect not only molar ratios, but also volume ratios (assuming conditions remain the same). example—reaction of carbon dioxide formation: 2CO(g) + O 2 (g) → 2CO 2 (g) 2 molecules1 molecule2 molecules 2 mole1 mole2 mol 2 volumes1 volume2 volumes Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Gas Stoichiometry

2CO(g) + O 2 (g) → 2CO 2 (g) 2 molecules1 molecule2 molecules 2 mole1 mole2 mol 2 volumes1 volume2 volumes You can use the volume ratios as conversion factors in gas stoichiometry problems as you would mole ratios : Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Gas Stoichiometry, continued etc….

Gas Stoichiometry, continued Sample Problem H Propane, C 3 H 8, is a gas that is sometimes used as a fuel for cooking and heating. The complete combustion of propane occurs according to the following balanced equation. C 3 H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2 O(g) (a) What will be the volume, in liters, of oxygen required for the complete combustion of L of propane? (b) What will be the volume of carbon dioxide produced in the reaction? Assume that all volume measurements are made at the same temperature and pressure. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Sample Problem H Solution a. Given: balanced chemical equation; V of propane = L Unknown: V of O 2 Solution: Because all volumes are to be compared at the same conditions, volume ratios can be used like mole ratios. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Gas Stoichiometry, continued

Sample Problem H Solution, continued b. Given: balanced chemical equation; V of propane = L Unknown: V of CO 2 Solution: Because all volumes are to be compared at the same conditions, volume ratios can be used like mole ratios. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law Gas Stoichiometry, continued

You have learned about equations describing the relationships between two or three of the four variables—pressure, volume, temperature, and moles—needed to describe a gas sample at a time. All of the gas laws you have learned thus far can be combined into a single equation, the ideal gas law: the mathematical relationship among pressure, volume, temperature, and number of moles of a gas. It is stated as shown below, where R is a constant: PV = nRT Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law The Ideal Gas Law

In the equation representing the ideal gas law, the constant R is known as the ideal gas constant. Its value depends on the units chosen for pressure, volume, and temperature in the rest of the equation. Measured values of P, V, T, and n for a gas at near-ideal conditions can be used to calculate R: Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law The Ideal Gas Law, continued The Ideal Gas Constant

The calculated value of R is usually rounded to (Latm)/(molK). Use this value in ideal gas law calculations when the volume is in liters, the pressure is in atmospheres, and the temperature is in kelvins. The ideal gas law can be applied to determine the existing conditions of a gas sample when three of the four values, P, V, T, and n, are known. Be sure to match the units of the known quantities and the units of R. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law The Ideal Gas Law, continued The Ideal Gas Constant, continued

Numerical Values of the Gas Constant Section 3 Gas Volumes and the Ideal Gas Law Chapter 11

The Ideal Gas Law, continued Sample Problem I What is the pressure in atmospheres exerted by a mol sample of nitrogen gas in a 10.0 L container at 298 K? Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law

Sample Problem I Solution Given: V of N 2 = 10.0 L n of N 2 = mol T of N 2 = 298 K Unknown: P of N 2 in atm Solution: Use the ideal gas law, which can be rearranged to find the pressure, as follows. Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law The Ideal Gas Law, continued

Sample Problem I Solution, continued Substitute the given values into the equation: Chapter 11 Section 3 Gas Volumes and the Ideal Gas Law The Ideal Gas Law, continued