Analysis of Algorithms

Slides:



Advertisements
Similar presentations
Analysis of Algorithms
Advertisements

Estimating Running Time Algorithm arrayMax executes 3n  1 primitive operations in the worst case Define a Time taken by the fastest primitive operation.
CSC401 – Analysis of Algorithms Lecture Notes 1 Introduction
Analysis of Algorithms1 Running Time Pseudo-Code Analysis of Algorithms Asymptotic Notation Asymptotic Analysis Mathematical facts COMP-2001 L4&5 Portions.
© 2004 Goodrich, Tamassia 1 Lecture 01 Algorithm Analysis Topics Basic concepts Theoretical Analysis Concept of big-oh Choose lower order algorithms Relatives.
Analysis of Algorithms Algorithm Input Output. Analysis of Algorithms2 Outline and Reading Running time (§1.1) Pseudo-code (§1.1) Counting primitive operations.
Analysis of Algorithms1 CS5302 Data Structures and Algorithms Lecturer: Lusheng Wang Office: Y6416 Phone:
Analysis of Algorithms (Chapter 4)
Analysis of Algorithms1 Estimate the running time Estimate the memory space required. Time and space depend on the input size.
Analysis of Algorithms
Analysis of Algorithms (pt 2) (Chapter 4) COMP53 Oct 3, 2007.
Fall 2006CSC311: Data Structures1 Chapter 4 Analysis Tools Objectives –Experiment analysis of algorithms and limitations –Theoretical Analysis of algorithms.
Introduction to Analysis of Algorithms Prof. Thomas Costello (reorganized by Prof. Karen Daniels)
The Seven Functions. Analysis of Algorithms. Simple Justification Techniques. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer Goodrich,
Analysis of Algorithms1 CS5302 Data Structures and Algorithms Lecturer: Lusheng Wang Office: Y6416 Phone:
PSU CS 311 – Algorithm Design and Analysis Dr. Mohamed Tounsi 1 CS 311 Design and Algorithms Analysis Dr. Mohamed Tounsi
Analysis of Performance
CS2210 Data Structures and Algorithms Lecture 2:
Analysis of Algorithms Algorithm Input Output © 2014 Goodrich, Tamassia, Goldwasser1Analysis of Algorithms Presentation for use with the textbook Data.
Analysis of Algorithms Lecture 2
Analysis of Algorithms
CSCE 3110 Data Structures & Algorithm Analysis Algorithm Analysis I Reading: Weiss, chap.2.
Analysis Tools Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Algorithm Efficiency CS 110: Data Structures and Algorithms First Semester,
Analysis of Algorithms1 The Goal of the Course Design “good” data structures and algorithms Data structure is a systematic way of organizing and accessing.
Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of time. Chapter 4. Algorithm Analysis (complexity)
Data Structures Lecture 8 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Computer Science 212 Title: Data Structures and Algorithms
Analysis of Algorithms1 Running Time Pseudo-Code Analysis of Algorithms Asymptotic Notation Asymptotic Analysis Mathematical facts.
Analysis of Algorithms Algorithm Input Output Last Update: Aug 21, 2014 EECS2011: Analysis of Algorithms1.
1 Dr. J. Michael Moore Data Structures and Algorithms CSCE 221 Adapted from slides provided with the textbook, Nancy Amato, and Scott Schaefer.
Dr. Alagoz CHAPTER 2 Analysis of Algorithms Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of.
CSC401 – Analysis of Algorithms Chapter 1 Algorithm Analysis Objectives: Introduce algorithm and algorithm analysis Discuss algorithm analysis methodologies.
CSC401 – Analysis of Algorithms Lecture Notes 2 Asymptotic Analysis Objectives: Mathematics foundation for algorithm analysis Amortization analysis techniques.
Analysis of Algorithms Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
Introduction to Analysis of Algorithms CS342 S2004.
Analysis of Algorithms Algorithm Input Output © 2010 Goodrich, Tamassia1Analysis of Algorithms.
Analysis of algorithms. What are we going to learn? Need to say that some algorithms are “better” than others Criteria for evaluation Structure of programs.
CSC Devon M. Simmonds University of North Carolina, Wilmington CSC231 Data Structures.
1/6/20161 CS 3343: Analysis of Algorithms Lecture 2: Asymptotic Notations.
Announcement We will have a 10 minutes Quiz on Feb. 4 at the end of the lecture. The quiz is about Big O notation. The weight of this quiz is 3% (please.
GC 211:Data Structures Week 2: Algorithm Analysis Tools Slides are borrowed from Mr. Mohammad Alqahtani.
1 COMP9024: Data Structures and Algorithms Week Two: Analysis of Algorithms Hui Wu Session 2, 2014
Analysis of Algorithms Algorithm Input Output © 2014 Goodrich, Tamassia, Goldwasser1Analysis of Algorithms Presentation for use with the textbook Data.
Data Structures I (CPCS-204) Week # 2: Algorithm Analysis tools Dr. Omar Batarfi Dr. Yahya Dahab Dr. Imtiaz Khan.
(Complexity) Analysis of Algorithms Algorithm Input Output 1Analysis of Algorithms.
Analysis of Algorithms
Analysis of Algorithms
COMP9024: Data Structures and Algorithms
COMP9024: Data Structures and Algorithms
GC 211:Data Structures Week 2: Algorithm Analysis Tools
03 Algorithm Analysis Hongfei Yan Mar. 9, 2016.
Algorithms Algorithm Analysis.
Analysis of Algorithms
COMP9024: Data Structures and Algorithms
Analysis of Algorithms
CS 3343: Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
Analysis of Algorithms
CS210- Lecture 2 Jun 2, 2005 Announcements Questions
Analysis of Algorithms
Analysis of Algorithms
Presentation transcript:

Analysis of Algorithms Input Output Algorithm

Analysis of Algorithms Outline Running time Pseudo-code Counting primitive operations Asymptotic notation Asymptotic analysis Analysis of Algorithms

How good is Insertion-Sort? How can you answer such questions? Analysis of Algorithms

Analysis of Algorithms What is “goodness”? Correctness Minimum use of “time” + “space” How can we quantify it? Measure Count Estimate Analysis of Algorithms

Analysis of Algorithms 1) Measure it Write a program implementing the algorithm Run the program with inputs of varying size and composition Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time Plot the results Analysis of Algorithms

Analysis of Algorithms

Limitations of Experiments It is necessary to implement the algorithm, which may be difficult Results may not be indicative of the running time on other inputs not included in the experiment. In order to compare two algorithms, the same hardware and software environments must be used Analysis of Algorithms

2) Count Primitive Operations The Idea Write down the pseudocode Count the number of “primitive operations” Analysis of Algorithms

Analysis of Algorithms Pseudocode Algorithm arrayMax(A, n) Input array A of n integers Output maximum element of A currentMax  A[0] for i  1 to n  1 do if A[i]  currentMax then currentMax  A[i] return currentMax Example: find max element of an array High-level description of an algorithm More structured than English prose Less detailed than a program Preferred notation for describing algorithms Hides program design issues Analysis of Algorithms

Analysis of Algorithms Pseudocode Details Control flow if … then … [else …] while … do … repeat … until … for … do … Indentation replaces braces Method declaration Algorithm method (arg [, arg…]) Input … Output … Method call var.method (arg [, arg…]) Return value return expression Expressions Assignment (like  in Java) Equality testing (like  in Java) n2 Superscripts and other mathematical formatting allowed Analysis of Algorithms

The Random Access Machine (RAM) Model A CPU An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character 1 2 Memory cells are numbered and accessing any cell in memory takes unit time. Analysis of Algorithms

Random Access Model (RAM) Time complexity (running time) = number of instructions executed Space complexity = the number of memory cells accessed Analysis of Algorithms

Analysis of Algorithms Primitive Operations Basic computations performed by an algorithm Identifiable in pseudocode Largely independent from the programming language Exact definition not important (we will see why later) Examples: Evaluating an expression Assigning a value to a variable Indexing into an array Calling a method Returning from a method Analysis of Algorithms

Analyzing pseudocode (by counting) For each line of pseudocode, count the number of primitive operations in it. Pay attention to the word "primitive" here; sorting an array is not a primitive operation. Multiply this count with the number of times this line is executed. Sum up over all lines. Analysis of Algorithms

Counting Primitive Operations By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size Algorithm arrayMax(A, n) currentMax  A[0] 2 1 Cost Times for i  1 to n  1 do 2 n if A[i]  currentMax then 2 (n  1) currentMax  A[i] 2 (n  1) { increment counter i } 2 (n  1) return currentMax 1 1 Total 8n  3 Analysis of Algorithms

Estimating Running Time Algorithm arrayMax executes 8n  2 primitive operations in the worst case Define a Time taken by the fastest primitive operation b Time taken by the slowest primitive operation Let T(n) be the actual worst-case running time of arrayMax. We have a (8n  2)  T(n)  b(8n  2) Hence, the running time T(n) is bounded by two linear functions Analysis of Algorithms

Analysis of Algorithms Insertion Sort Hint: observe each line i can be implemented using a constant number of RAM instructions, Ci for each value of j in the outer loop, we let tj be the number of times that the while loop test in line 4 is executed.  Analysis of Algorithms

Analysis of Algorithms Insertion Sort Question: So what is the running time? Analysis of Algorithms

Time Complexity may depend on the input! Best Case:? Worst Case:? Average Case:? Analysis of Algorithms

Complexity may depend on the input! Best Case: Already sorted. tj=1. Running time = C * N (a linear function of N) Worst Case: Inverse order. tj=j. Analysis of Algorithms

Arithmetic Progression Neglecting the constants, the worst-base running time of insertion sort is proportional to 1 + 2 + …+ n The sum of the first n integers is n(n + 1) / 2 Thus, algorithm insertion sort required almost n2 operations. Analysis of Algorithms

What about the Average Case? Idea: Assume that each of the n! permutations of A is equally likely. Compute the average over all possible different inputs of length N. Difficult to compute! In this course we focus on Worst Case Analysis! Analysis of Algorithms

See TimeComplexity Spreadsheet Analysis of Algorithms

Analysis of Algorithms What is “goodness”? Correctness Minimum use of “time” + “space” How can we quantify it? Measure wall clock time Count operations Estimate Computational Complexity Analysis of Algorithms

Analysis of Algorithms Asymptotic Analysis Uses a high-level description of the algorithm instead of an implementation Allows us to evaluate the speed of an algorithm independent of the hardware/software environment Estimate the growth rate of T(n) A back of the envelope calculation!!! Analysis of Algorithms

Analysis of Algorithms The idea Write down an algorithm Using Pseudocode In terms of a set of primitive operations Count the # of steps In terms of primitive operations Considering worst case input Bound or “estimate” the running time Ignore constant factors Bound fundamental running time Analysis of Algorithms

Growth Rate of Running Time Changing the hardware/ software environment Affects T(n) by a constant factor, but Does not alter the growth rate of T(n) The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax Analysis of Algorithms

Which growth rate is best? T(n) = 1000n + n2 or T(n) = 2n + n3 Analysis of Algorithms

Analysis of Algorithms Growth Rates Growth rates of functions: Linear  n Quadratic  n2 Cubic  n3 In a log-log chart, the slope of the line corresponds to the growth rate of the function Analysis of Algorithms

Functions Graphed Using “Normal” Scale g(n) = 2n g(n) = 1 g(n) = n lg n g(n) = lg n g(n) = n2 g(n) = n g(n) = n3 Analysis of Algorithms

Analysis of Algorithms Constant Factors The growth rate is not affected by constant factors or lower-order terms Examples 102n + 105 is a linear function 105n2 + 108n is a quadratic function Analysis of Algorithms

Analysis of Algorithms Big-Oh Notation Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n0 such that f(n)  cg(n) for n  n0 Example: 2n + 10 is O(n) 2n + 10  cn (c  2) n  10 n  10/(c  2) Pick c = 3 and n0 = 10 Analysis of Algorithms

f(n) is O(g(n)) iff f(n)  cg(n) for n  n0 Analysis of Algorithms

Big-Oh Notation (cont.) Example: the function n2 is not O(n) n2  cn n  c The above inequality cannot be satisfied since c must be a constant Analysis of Algorithms

Analysis of Algorithms More Big-Oh Examples 7n-2 7n-2 is O(n) need c > 0 and n0  1 such that 7n-2  c•n for n  n0 this is true for c = 7 and n0 = 1 3n3 + 20n2 + 5 3n3 + 20n2 + 5 is O(n3) need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0 this is true for c = 4 and n0 = 21 3 log n + 5 3 log n + 5 is O(log n) need c > 0 and n0  1 such that 3 log n + 5  c•log n for n  n0 this is true for c = 8 and n0 = 2 Analysis of Algorithms

Analysis of Algorithms Big-Oh and Growth Rate The big-Oh notation gives an upper bound on the growth rate of a function The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no more than the growth rate of g(n) We can use the big-Oh notation to rank functions according to their growth rate Analysis of Algorithms

Analysis of Algorithms Questions Is T(n) = 9n4 + 876n = O(n4)? Is T(n) = 9n4 + 876n = O(n3)? Is T(n) = 9n4 + 876n = O(n27)? T(n) = n2 + 100n = O(?) T(n) = 3n + 32n3 + 767249999n2 = O(?) Analysis of Algorithms

Big-Oh Rules (shortcuts) If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e., Drop lower-order terms Drop constant factors Use the smallest possible class of functions Say “2n is O(n)” instead of “2n is O(n2)” Use the simplest expression of the class Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)” Analysis of Algorithms

Analysis of Algorithms Rank From Fast to Slow… T(n) = O(n4) T(n) = O(n log n) T(n) = O(n2) T(n) = O(n2 log n) T(n) = O(n) T(n) = O(2n) T(n) = O(log n) T(n) = O(n + 2n) Note: Assume base of log is 2 unless otherwise instructed i.e. log n = log2 n Analysis of Algorithms

Computing Prefix Averages We further illustrate asymptotic analysis with two algorithms for prefix averages The i-th prefix average of an array X is average of the first (i + 1) elements of X A[i] = X[0] + X[1] + … + X[i] Computing the array A of prefix averages of another array X has applications to financial analysis Analysis of Algorithms

Analysis of Algorithms Prefix Averages (Quadratic) The following algorithm computes prefix averages in quadratic time by applying the definition Algorithm prefixAverages1(X, n) Input array X of n integers Output array A of prefix averages of X #operations A  new array of n integers n for i  0 to n  1 do n s  X[0] n for j  1 to i do 1 + 2 + …+ (n  1) s  s + X[j] 1 + 2 + …+ (n  1) A[i]  s / (i + 1) n return A 1 Analysis of Algorithms

Arithmetic Progression The running time of prefixAverages1 is O(1 + 2 + …+ n) The sum of the first n integers is n(n + 1) / 2 There is a simple visual proof of this fact Thus, algorithm prefixAverages1 runs in O(n2) time Analysis of Algorithms

Analysis of Algorithms Prefix Averages (Linear) The following algorithm computes prefix averages in linear time by keeping a running sum Algorithm prefixAverages2(X, n) Input array X of n integers Output array A of prefix averages of X #operations A  new array of n integers n s  0 1 for i  0 to n  1 do n s  s + X[i] n A[i]  s / (i + 1) n return A 1 Algorithm prefixAverages2 runs in O(n) time Analysis of Algorithms

Math you may need to Review Summations Logarithms and Exponents Proof techniques Basic probability properties of logarithms: logb(xy) = logbx + logby logb (x/y) = logbx - logby logbxa = alogbx logba = logxa/logxb properties of exponentials: a(b+c) = aba c abc = (ab)c ab /ac = a(b-c) b = a logab bc = a c*logab Analysis of Algorithms

Analysis of Algorithms Big-Omega  Definition: f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c•g(n) for n  n0 An asymptotic lower Bound Analysis of Algorithms

Analysis of Algorithms Big-Theta  Definition: f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer constant n0  1 such that c’•g(n)  f(n)  c’’•g(n) for n  n0 Here we say that g(n) is an asymptotically tight bound for f(n). Analysis of Algorithms

Analysis of Algorithms Big-Theta  (cont) Based on the definitions, we have the following theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)). For example, the statement n2/2 + lg n = Θ(n2) is equivalent to n2/2 + lg n = O(n2) and n2/2 + lg n = Ω(n2). Note that asymptotic notation applies to asymptotically positive functions only, which are functions whose values are positive for all sufficiently large n. Analysis of Algorithms

Analysis of Algorithms Prove n2/2 + lg n = Θ(n2). Proof. To prove this claim, we must determine positive constants c1, c2 and n0, s.t. c1 n2<= n2/2 + lg n <= c2 n2 c1 <= ½ + (lg n) / n2 <= c2 (divide thru by n2) Pick c1 = ¼ , c2 = ¾ and n0 = 2 For n0 = 2, 1/4  <= ½ + (lg 2) / 4 <= ¾, TRUE When n0 > 2, the (½ + (lg 2) / 4) term grows smaller but never less than ½, therefore n2/2 + lg n = Θ(n2). Analysis of Algorithms

Intuition for Asymptotic Notation Big-Oh f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n) big-Omega f(n) is (g(n)) if f(n) is asymptotically greater than or equal to g(n) big-Theta f(n) is (g(n)) if f(n) is asymptotically equal to g(n) Analysis of Algorithms