Anti-D and B meson in nuclear medium at zero temperature Shigehiro YASUI (KEK) Recent progress in hadron physics -From hadrons to quark and

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Exotic hadrons with heavy quarks May. Shigehiro Yasui KEK.
Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized.
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
エキゾチックな チャームハドロン・原子核 安井繁宏 KEK JAEA
From hadrons to nuclei with charm and bottom flavors S. Yasui KEK Baryon
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Charm physics DN interactions in nuclear matter Clara Estela Jiménez Tejero National Nuclear Summer School 2007, Tallahassee, Florida Advisors: I. Vidaña,
Open charm mesons in a hot and dense medium1 L. Tolos 1, A. Ramos 2 and T. Mizutani 3 1 FIAS (University of Frankfurt) 2 Universitat de Barcelona 3 Virginia.
The Constituent Quark Models. Outline The Quark Model Original Quark Model Additions to the Original Quark Model Color Harmonic Potential Model Isgur-Karl.
Elementary particles atom Hadrons Leptons Baryons Mesons Nucleons
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Open-charm mesons in hot and dense matter L. Tolos 1, A. Ramos 2 and T. M. 3 1 FIAS (University of Frankfurt) 2 Universitat de Barcelona 3 Virginia Tech.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Quark dynamics studied in charmed baryons April 20, 2015ASRC Seminar1 Atsushi Hosaka, RCNP, Osaka ASRC Seminar Contents 1. Introduction 2. Structure: How.
反 D 中間子をふくむチャーム原子核 安井 繁宏 (KEK) arXiv: [hep-ph] KEK (東海)研究会「原子核媒質中のハドロン研究 = 魅力と課題 = Aug 共同研究者 須藤 和敬 ( 二松学舎大学 )
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Effect of thermal fluctuation of baryons on vector mesons and low mass dileptons ρ ω Sanyasachi Ghosh (VECC, Kolkata, India)
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
The Zoo of Subatomic Particles
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Charm quark in nuclear systems Strangeness and charm hadron Tokai, 3-7 Aug S. Yasui Tokyo Tech.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Kondo effect in charm/bottom nuclei International workshop on J-PARC hadron physics in Tokai, 2-4 Mar Shigehiro Yasui Tokyo Institute of.
Su Houng Lee 1. Few words on a recent sum rule result 2. A simple constituent quark model for D meson 3. Consequences 4. Summary D meson in nuclear medium:
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
Shigehiro Yasui Tokyo Institute of Technology
Exotic hadrons and nuclei with charm flavor
Doubly charmed mesons from hadronic molecules
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
Dibaryons with heavy quarks
The Structure of Nuclear force in a chiral quark-diquark model
d*, a quark model perspective
有限密度・ 温度におけるハドロンの性質の変化
Charmonium spectroscopy above thresholds
Theory on Hadrons in nuclear medium
Presentation transcript:

Anti-D and B meson in nuclear medium at zero temperature Shigehiro YASUI (KEK) Recent progress in hadron physics -From hadrons to quark and University, Feb. 2013

Hadrons in nuclear medium are useful for study of … 1. Introduction (i) Interaction between hadron and nucleon (ii) Modification of properties of hadron (iii) Change of medium caused by embedded hadron Hyperon-nucleon interaction, hyperon-hyperon interaction π, ω, ρ, η ( ’ ) meson masses and decay widths in nuclear medium K bar -nucleon interaction Shrink of radii of hypernuclei (“glue” effect by hyperon) Possible high density state in K bar nuclei Fundamental questions in QCD: Color confinement, Spontaneous chiral symmetry breaking, …

1. Introduction Charm & Bottom → Change of Mass-scale and Symmetry up down strange charm bottom mass Λ QCD ≈ Chiral Symmetry Heavy Quark Symmetry SU(3) L x SU(3) R SU(2N F ) [MeV] Change !!

1. Introduction Charm & Bottom → Change of Mass-scale and Symmetry up down strange charm bottom mass Λ QCD ≈ Chiral Symmetry Heavy Quark Symmetry SU(3) L x SU(3) R SU(2N F ) [MeV] Change !! D(cq) or D(cq) D, D (B, B) mesic nuclei - D, D (B, B)-nucleon interaction? - Modification of D, D (B, B) mesons in nuclear matter (χSB)? - Change of nuclear matter? - How is QCD concerned?

1. Introduction Charm & Bottom → Change of Mass-scale and Symmetry up down strange charm bottom mass Λ QCD ≈ Chiral Symmetry Heavy Quark Symmetry SU(3) L x SU(3) R SU(2N F ) [MeV] Change !! D(cq) or D(cq) D, D (B, B) mesic nuclei - D, D (B, B)-nucleon interaction? - Modification of D, D (B, B) mesons in nuclear matter (χSB)? - Change of nuclear matter? - How is QCD concerned?

498 MeV 1870 MeV 5400 MeV Charge Conjugate Including u, d antiquark - Annihilation - Absorption Including u, d quark - NO annihilation - NO absorption “Particle” ≠ “Antiparticle” in nuclear matter “Particle” ≠ “Antiparticle” in nuclear matter “Particle” “Antiparticle”

D*+N (2947 MeV) D+N (2803 MeV) Only DN and D*N channel D and nucleon `Exotic channel‘ 1. Introduction π+Σc (2593 MeV) π+Σc* (2658 MeV) Λc(2595) 0(1/2 - ) Λc(2625) 0(3/2 - ) Σc(2800) 1(? ? ) D*+N (2947 MeV) D+N (2803 MeV) D and nucleon `Baryon channel‘ C<0C>0 differen t What is D/D-nucleon interaction ? cqqq q

D*+N (2947 MeV) D+N (2803 MeV) Only DN and D*N channel D and nucleon `Exotic channel‘ 1. Introduction C<0 What is D/D-nucleon interaction ? cqqq q C>0 π+Σc (2593 MeV) π+Σc* (2658 MeV) Λc(2595) 0(1/2 - ) Λc(2625) 0(3/2 - ) Σc(2800) 1(? ? ) D*+N (2947 MeV) D+N (2803 MeV) D and nucleon `Baryon channel‘ differen t cqqq q

Strangeness, Charm, Bottom,... DB K K* D* B* 400 MeV 140 MeV 45 MeV In cham/bottom, vector meson is also important! 500 MeV1870 MeV5280 MeV Only NG boson (K) is important in dynamics, and vector meson (K*) is almost irrelevant… pseudo- scalar vector 1. Introduction sqcqbqq=u,d

Strangeness, Charm, Bottom,... NK KN  Weinberg-Tomozawa interaction One-pion exchange potential (OPEP) ND(*)D(*) D(*)D(*) N NB(*)B(*) B(*)B(*) N One-pion exchange is absent. (short range force) One-pion exchange is present. (long range force)  SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) meson-nucleon interaction 1. Introduction

Strangeness, Charm, Bottom,... NK KN  One-pion exchange potential (OPEP) ND D*N NB B*N One-pion exchange is absent. (short range force) One-pion exchange is present. (long range force)  meson-nucleon interaction 1. Introduction SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) Weinberg-Tomozawa interaction

Strangeness, Charm, Bottom,... NK KN  One-pion exchange potential (OPEP) ND* DN NB* BN One-pion exchange is absent. (short range force) One-pion exchange is present. (long range force)  meson-nucleon interaction 1. Introduction SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) Weinberg-Tomozawa interaction

Strangeness, Charm, Bottom,... NK KN  One-pion exchange potential (OPEP) ND* N NB* N One-pion exchange is absent. (short range force) One-pion exchange is present. (long range force)  meson-nucleon interaction 1. Introduction SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) Weinberg-Tomozawa interaction

Strangeness, Charm, Bottom,... NK KN  One-pion exchange potential (OPEP) ND(*)D(*) D(*)D(*) N NB(*)B(*) B(*)B(*) N One-pion exchange is absent. (short range force) One-pion exchange is present. (long range force)  meson-nucleon interaction 1. Introduction SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) Weinberg-Tomozawa interaction

D*+N (2947 MeV) D+N (2803 MeV) Only DN and D*N channel D and nucleon `Exotic channel‘ 1. Introduction C<0 What is D/D-nucleon interaction ? cqqq q D D N N ND* S-wave D-wave ・ Mass degeneracy for D and D* M D* -M D = 140 MeV ∝ 1/m c ・ π exchange (tensor force) S-D wave mixing (deuteron-like) π π → New mechanism of DN interaction SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) → Some bound/resonant states “D-D* mixing” via pion exchange

DN 2807 MeV DN state 2946 MeV D*N Λ(1405) KN πΣ 1433 MeV 1330 MeV ΞN ΛΛ 2255 MeV 2230MeV H dibaryon K nuclei Hypernuclei BN 6217 MeV BN state 6263 MeV B*N 1. Introduction From hadron-nucleon interaction to a variety of exotic nuclei From hadron-nucleon interaction to a variety of exotic nuclei K(sq), Ξ(ssq), … B nuclei ? D nuclei ?

DN 2807 MeV DN state 2946 MeV D*N Λ(1405) KN πΣ 1433 MeV 1330 MeV ΞN ΛΛ 2255 MeV 2230MeV H dibaryon K nuclei Hypernuclei BN 6217 MeV BN state 6263 MeV B*N B nuclei ? 1. Introduction D(cq), B(bq) ?? From hadron-nucleon interaction to a variety of exotic nuclei From hadron-nucleon interaction to a variety of exotic nuclei

From hadron-nucleon interaction to a variety of exotic nuclei From hadron-nucleon interaction to a variety of exotic nuclei How is D bar (B) meson bound in nuclear matter? D bar (B) meson – nucleon interaction must be very interesting !! B nuclei ? D nuclei ? 1. Introduction Cf. Yamaguchi’s talk on few-body D bar -nuclear systems in 19 Λ(1405) KN πΣ 1433 MeV 1330 MeV ΞN ΛΛ 2255 MeV 2230MeV H dibaryon K nuclei Hypernuclei BN 6217 MeV BN state DN 2807 MeV DN state 2946 MeV 6263 MeV D*N B*N Quark-meson coupling model (Quark model) ・ K. Tsushima, D. -H. Lu, A. W. Thomas, K. Saito and R. H. Landau, Phys. Rev. C 59, 2824 (1999). ・ A. Sibirtsev, K. Tsushima and A. W. Thomas, Eur. Phys. J. A 6, 351 (1999). ・ K. Tsushima and F. C. Khanna, Phys. Lett. B 552, 138 (2003). QCD sum rule ・ F. Klingl, S. -s. Kim, S. H. Lee, P. Morath and W. Weise, Phys. Rev. Lett. 82, 3396 (1999. ・ Y. -H. Song, S. H. Lee and K. Morita, Phys. Rev. C 79, (2009). ・ K. Morita and S. H. Lee, Phys. Rev. C 85, (2012). ・ A. Hayashigaki, Phys. Lett. B 487, 96 (2000). ・ B. Friman, S. H. Lee and T. Song, Phys. Lett. B 548, 153 (2002). ・ T. Hilger, R. Thomas and B. Kampfer, Phys. Rev. C 79, (2009). ・ T. Hilger, R. Schulze and B. Kampfer, J. Phys. G G 37, (2010). ・ Z. -G. Wang and T. Huang, Phys. Rev. C 84, (2011). Hadron dynamics I (W-T interaction from SU(4) symmetry with breaking term) ・ A. Mishra, E. L. Bratkovskaya, J. Schaner-Bielich, S. Schramm and H. Stoecker, Phys. Rev. C 69, (2004). ・ M. F. M. Lutz and C. L. Korpa, Phys. Lett. B 633, 43 (2006). ・ L. Tolos, A. Ramos and T. Mizutani, Phys. Rev. C 77, (2008). ・ A. Mishra and A. Mazumdar, Phys. Rev. C 79, (2009). ・ A. Kumar and A. Mishra, Phys. Rev. C 81, (2010). ・ C. E. Jimenez-Tejero, A. Ramos, L. Tolos and I. Vidana, Phys. Rev. C 84, (2011). ・ A. Kumar and A. Mishra, Eur. Phys. J. A 47, 164 (2011). ・ C. Garcia-Recio, J. Nieves, L. L. Salcedo and L. Tolos, Phys. Rev. C 85, (2012). Hadron dynamics II (π exchange interaction) ・ S. Yasui, K. Sudoh, Phys. Rev. C87, (2013). ← Heavy Quark Symmetry + π exchange

1. Introduction 2. D bar and B mesons bound in nuclear matter 3. “Strong coupling problem“ in heavy mass limit 4. Summary & perspectives

Heavy meson Lagrangian (heavy quark symmetry & chiral symmetry) G. Burdman and J.F. Donoghue (1992) M.B. Wise (1992) T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y.C. Lin and H.-L. Yu (1997) vector + pseudoscalar P*=D* bar P=D bar Multiplet field Coupling const. from experimental value of deacy width of D*→Dπ Self-energy of D in nuclear matter at order of two pion exchange D D D D D*Λc N π π NNN in-medium nucleon propagator (Pauli exclusion principle) suppressed by 1/m D, 1/m D*, 1/m N Cf. Nuclear matter Kaiser, Fritsch, Weise, NPB697, 255 (2002); ibid. A750, 259 (2005) Fiorilla, Kaiser, Weise, Prog. Part. Nucl. Phys. 67, 317 (2012) Hypernuclear matter Kaiser, Weise, PRC71, (2005) Kaiser, PRC71, (2005) SY and Sudoh, PRC87, (2013) 2. D bar and B mesons in nuclear matter ・ Mass degeneracy of D bar and D* bar in heavy quark limit ・ Vertex strength: g πDD* =g πD*D* (spin symmetry) D D N N ND* π π D D N π π DN scattering in vacuumD self-energy in matter

2. D bar and B mesons in nuclear matter Self-energy of D in nuclear matter D D* D π π N D D SY and Sudoh, PRC87, (2013) FreePauli exclusion in Fermi surface In-medium fermion propagator (k F : Fermi momentum) “particle”“hole”“particle”“hole”

2. D bar and B mesons in nuclear matter Self-energy of D* in nuclear matter D* D D π π N SY and Sudoh, PRC87, (2013) “hole” “particle”

Numerical results self-energy of D, B mesons in nuclear matter momentum cutoff : 1.27 × 0.7 GeV for D bar 1.22 × 0.7 GeV for B -35 MeV -107 MeV Negative self-energies Bound in nuclear matter D B 2. D bar and B mesons in nuclear matter Normal nuclear matter density radius ratio × hyperon cutoff

Numerical results self-energy of D*, B* mesons in nuclear matter 2. D bar and B mesons in nuclear matter momentum cutoff : 1.27 × 0.7 GeV for D bar 1.22 × 0.7 GeV for B Negative self-energies (real), but large imaginary parts Bound but unstable in nuclear matter -150 – i160 MeV -200 – i120 MeV D* B* radius ratio × hyperon cutoff Normal nuclear matter density

・ Atomic nuclei with D meson 2. D bar and B mesons in nuclear matter Fine splittings (≈ten MeV) Applications SY and Sudoh, PRC87, (2013) V 0 =-35 MeV δ : density difference between p and n Cf. “Isovector deformation” in K bar nuclei Dote, Akaishi, Horiuchi, Yamazaki, PLB590, 51 (2004) ・ Isospin polarization embedded in symmetric nuclear matter “Stable” distribution of isospin density → “Unstable” distribution of isospin density

2. D bar and B mesons in nuclear matter D bar (0 - ) : Q bar + q + q bar qq + gq + … D* bar (1 - ) : Q bar + q + q bar qq + gq + … ↑ ↓ ↑ ↑ Discussion on spin in heavy quark limit in QCD D bar and D* bar should be degenerate in vacuum. (Bottom is much better.) in vacuum “brown muck” - everything that is not the heavy quark (Isgur) degenerate

D bar (0 - ) : Q bar + q + q bar qq + gq + … + matter D* bar (1 - ) : Q bar + q + q bar qq + gq + … + matter ↑ ↓ ↑ ↑ in medium Discussion on spin in heavy quark limit in QCD 2. D bar and B mesons in nuclear matter D bar and D* bar should be degenerate in vacuum. (Bottom is much better.) “in-medium brown muck” degenerate

D bar (0 - ) : Q bar + q + q bar qq + gq + … + matter D* bar (1 - ) : Q bar + q + q bar qq + gq + … + matter ↑ ↓ ↑ ↑ D bar and D* bar should be degenerate also in matter. (Bottom is much better.) in medium D D* D π π N D π π N Q. Is there mass degeneracy in our formalism based on π exchange interaction? degenerate “in-medium brown muck” QCD-based result Discussion on spin in heavy quark limit in QCD 2. D bar and B mesons in nuclear matter A. Yes. D bar and D* bar in matter are degenerate in heavy mass limit (Δ ∝ m D* -m D →0).

1. Introduction 2. D bar and B mesons bound in nuclear matter 3. “Strong coupling problem“ in heavy mass limit 4. Summary & perspectives

3. “Strong coupling problem” in heavy mass limit We critically discuss heavy mass limit in matter at zero temperature. Heavy quark limit exists in matter as well as in vacuum. BUT always so? Fermi gas by fermion ψ Heavy “flavorerd” particle Φ (mass: M B →∞) Assumptions SY and Sudoh, arXiv ・ Fundamental representation of SU(n) symmetry (isospin doublet for n=2) ・ Current-current interaction with λ f ・ λ B factor (λ f/B : generator of SU(n) group) ・ Small coupling constant G B (so that perturbation can be applied.) “D bar, B meson” “Nuclear matter”

3. “Strong coupling problem” in heavy mass limit Scattering amplitude for fermion ψ and heavy boson Φ SY and Sudoh, arXiv Heavy boson Φ with mass M B Fermion ψ (matter) + + = + … 1 st order (tree) 2 nd order (one-loop) Heavy boson Φ in matter Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson particle hole

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy boson Φ in matter Logarithmic enhancement in loop diagram in heavy mass limit (M B →∞) Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle ≈ G B M B λ f ・ λ B ≈ G B 2 M B Log(M B ) λ f ・ λ B

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle Fermi surface M B : heavy boson mass, m: fermion mass

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle Fermi surface Singularity on Fermi surface denominator = 0 for M B = ∞ case M B : heavy boson mass, m: fermion mass

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle Fermi surface No singularity on Fermi surface denominator = 0 for M B = finite case M B : heavy boson mass, m: fermion mass

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle Fermi surface M B = ∞M B = finite SingularityNo singularity Log M B Logarithmic M B : heavy boson mass, m: fermion mass

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Scattering amplitude for fermion ψ and heavy boson Φ Fermion ψ (matter) Heavy boson Φ with mass M B particle hole ↑ ↑ ↑ ↑↑↑ ↑↑↑↑↑ ↑ 1. Spin non-flip in intermediate state → Logarithmic singularity at Fermi surface is canceled.

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Scattering amplitude for fermion ψ and heavy boson Φ Fermion ψ (matter) Heavy boson Φ with mass M B particle hole ↑ ↑ ↓ ↑↑↑ ↓↑↑↓↑ ↓ 2. Spin flip in intermediate state

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … Heavy boson Φ in matter Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Scattering amplitude for fermion ψ and heavy boson Φ Fermion ψ (matter) Heavy boson Φ with mass M B particle hole ↑ ↑ ↓ ↑↑↑ ↓↑↑↓↑ ↓ 2. Spin flip in intermediate state → Logarithmic singularity at Fermi surface is NOT canceled. Cf. “Kondo problem” by J. Kondo (1964); log|q-k F | for q→k F, M B =∞.

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy boson Φ in matter Logarithmic enhancement in loop diagram in heavy mass limit (M B →∞) Scattering amplitude for fermion ψ and heavy boson Φ Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Heavy boson Φ with mass M B Fermion ψ (matter) hole particle ≈ G B M B λ f ・ λ B ≈ G B 2 M B Log(M B ) λ f ・ λ B

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy boson Φ in matter “Strong coupling problem” in λ f ・ λ B -dependent interaction in M B →∞ (isospin) Nuclear matter with isospin SU(2) ψ: nucleon Φ: D bar (B) meson Scattering amplitude for fermion ψ and heavy boson Φ Fermion ψ (matter) Heavy boson Φ with mass M B particle hole ≈ G B M B λ f ・ λ B ≈ G B 2 M B Log(M B ) λ f ・ λ B

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv Heavy fermion Ψ in matter Scattering amplitude for fermion ψ and heavy fermion Ψ Fermion ψ (matter) Heavy fermion Ψ with mass M F

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter “Strong coupling problem” in λ f ・ λ F -dependent interaction in M F →∞ Scattering amplitude for fermion ψ and heavy fermion Ψ Fermion ψ (matter) Heavy fermion Ψ with mass M F particle hole ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F “Strong coupling problem” in λ f ・ λ F -dependent interaction in M F →∞ Nuclear matter with isospin SU(2) ψ: nucleon Ψ: Λ c baryon ??? Not applicable, because Λ c is NOT doublet in SU(2) !! Scattering amplitude for fermion ψ and heavy fermion Ψ Heavy fermion Ψ with mass M F Fermion ψ (matter) particle hole

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter “Strong coupling problem” in λ f ・ λ F -dependent interaction in M F →∞ Quark matter with color SU(3) ψ: light quark Ψ: charm (bottom) quark → 3 c representation of color SU(3) (color) Scattering amplitude for fermion ψ and heavy fermion Ψ Heavy fermion Ψ with mass M F Fermion ψ (matter) particle hole ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter “Strong coupling problem” in λ f ・ λ F -dependent interaction in M F →∞ Quark matter with color SU(3) ψ: light quark Ψ: charm (bottom) quark → 3 c representation of color SU(3) (color) Scattering amplitude for fermion ψ and heavy fermion Ψ Heavy fermion Ψ with mass M F Fermion ψ (matter) particle hole ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F R R RR RR R R R R R R “color non-flip”

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter “Strong coupling problem” in λ f ・ λ F -dependent interaction in M F →∞ Quark matter with color SU(3) ψ: light quark Ψ: charm (bottom) quark → 3 c representation of color SU(3) (color) Scattering amplitude for fermion ψ and heavy fermion Ψ Heavy fermion Ψ with mass M F Fermion ψ (matter) particle hole ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F R R RR RR R R B B B B “color flip”

3. “Strong coupling problem” in heavy mass limit SY and Sudoh, arXiv = + … 1 st order (tree) 2 nd order (one-loop) Heavy fermion Ψ in matter Quark matter with color SU(3) ψ: light quark Ψ: charm (bottom) quark → 3 c representation of color SU(3) Scattering amplitude for fermion ψ and heavy fermion Ψ Quark matter with charm (bottom) quark at zero temperature may not be perturbative system, but be strongly coupled one!! particle Heavy fermion Ψ with mass M F Fermion ψ (matter) hole ≈ G F λ f ・ λ F ≈ G F 2 Log(M F ) λ f ・ λ F R RRR RR R R B B B B

4. Summary & perspectives ・ Heavy quark symmetry & chiral symmetry is important to understand open charm and bottom mesons in nuclear medium. ・ Pseudoscalar (D bar, B) mesons are bound in nuclear matter. Vector (D bar *, B*) mesons are bound, but with large widths. ・ For embedded particle, λ f ・ λ B/F -dependent interaction will become strong by logarithmic enhancement in heavy mass limit. ・ How to deal with “strong coupling problem”? Application to nuclear matter and quark matter? ・ Charmed nuclei are interesting for experiments at J-PARC. → D bar, D, J/Ψ, Λ c, Σ c ( * ) embedded in atomic nuclei To study “new” physics in charmed (bottom) nuclear systems will be important for J-PARC (and others).

[6] K. Tsushima, D. -H. Lu, A. W. Thomas, K. Saito and R. H. Landau, Phys. Rev. C 59, 2824 (1999). [7] A. Sibirtsev, K. Tsushima and A. W. Thomas, Eur. Phys. J. A 6, 351 (1999). [15] T. Hilger, R. Thomas and B. Kampfer, Phys. Rev. C 79, (2009). [16] T. Hilger, R. Schulze and B. Kampfer, J. Phys. G G 37, (2010). [17] Z. -G. Wang and T. Huang, Phys. Rev. C 84, (2011). [18] A. Mishra, E. L. Bratkovskaya, J. Schaner-Bielich, S. Schramm and H. Stoecker, Phys. Rev. C 69, (2004). [19] M. F. M. Lutz and C. L. Korpa, Phys. Lett. B 633, 43 (2006). [20] L. Tolos, A. Ramos and T. Mizutani, Phys. Rev. C 77, (2008). [21] A. Mishra and A. Mazumdar, Phys. Rev. C 79, (2009). [22] A. Kumar and A. Mishra, Phys. Rev. C 81, (2010). [23] C. E. Jimenez-Tejero, A. Ramos, L. Tolos and I. Vidana, Phys. Rev. C 84, (2011). [24] A. Kumar and A. Mishra, Eur. Phys. J. A 47, 164 (2011). [25] C. Garcia-Recio, J. Nieves, L. L. Salcedo and L. Tolos, Phys. Rev. C 85, (2012). 2. D bar and B mesons in nuclear matter Comparison with other works Quark-meson coupling modelQCD rum rule Mean field Channel-coupling (w/o π exchange) Hadron dynamics π exchange Binding energy [MeV]

3. “Strong coupling problem” in heavy mass limit Scattering amplitude for fermion and heavy flavor boson 1 st order (tree level) ≈ G B M B Fermion ψ (matter) Heavy flavor boson Φ with mass M B GBMBGBMB SY and Sudoh, arXiv a ( ’ ), b ( ’ ) =1, …, n

3. “Strong coupling problem” in heavy mass limit 2 nd order (one-loop level) GBMBGBMB GBMBGBMB GBMBGBMB GBMBGBMB SY and Sudoh, arXiv Scattering amplitude for fermion and heavy flavor boson Fermion ψ (matter) Heavy flavor boson Φ with mass M B

3. “Strong coupling problem” in heavy mass limit 2 nd order (one-loop level) GBMBGBMB GBMBGBMB GBMBGBMB GBMBGBMB (Log M B )/M B M B : heavy boson mass, m: fermion mass ≈ G B 2 M B Log(M B ) Logarithmic enhancement in heavy mass limit (M B →∞) !! Log M B from loop contribution with particles and holes SY and Sudoh, arXiv Scattering amplitude for fermion and heavy flavor boson Fermion ψ (matter) Heavy flavor boson Φ with mass M B

3. “Strong coupling problem” in heavy mass limit GBMBGBMB GBMBGBMB GBMBGBMB GBMBGBMB (Log M B )/M B λ f ・ λ B -independent term → Log M B λ f ・ λ B -dependent term → Log M B SY and Sudoh, arXiv Scattering amplitude for fermion and heavy flavor boson Fermion ψ (matter) Heavy flavor boson Φ with mass M B 2 nd order (one-loop level) ≈ G B 2 M B Log(M B ) Logarithmic enhancement in heavy mass limit (M B →∞) !! M B : heavy boson mass, m: fermion mass

3. “Strong coupling problem” in heavy mass limit λf・λBλf・λB λf・λBλf・λB λf・λBλf・λB λf・λBλf・λB Opposite signs in λ f ・ λ B are important for presence of Log(M B ). < 0> 0 SY and Sudoh, arXiv Scattering amplitude for fermion and heavy flavor boson Fermion ψ (matter) Heavy flavor boson Φ with mass M B 2 nd order (one-loop level) ≈ G B 2 M B Log(M B ) Logarithmic enhancement in heavy mass limit (M B →∞) !!

3. “Strong coupling problem” in heavy mass limit Brief summary Heavy boson in matter ≈ G B 2 M B Log(M B ) ≈ G B M B Logarithmic enhancement in loop diagram in heavy mass limit (M B →∞) Heavy flavor boson Φ with mass M B Fermion ψ (matter) Nuclear matter with isospin SU(n=2) ψ: nucleon Φ: D bar (B) meson + + SY and Sudoh, arXiv “Strong coupling problem” in λ f ・ λ B -dependent interaction (isospin) λf・λBλf・λB λf・λBλf・λB λf・λBλf・λB λf・λBλf・λB λf・λBλf・λB

3. “Strong coupling problem” in heavy mass limit Heavy fermion in matter ≈ G F Brief summary Heavy flavor fermion Ψ with mass M F Fermion ψ (matter) Logarithmic enhancement in loop diagram in heavy mass limit (M F →∞) + + SY and Sudoh, arXiv Nuclear matter with isospin SU(n=2) ψ: nucleon Ψ: Λ c and Σ c ( * ) baryon ??? Not applicable, because Λ c and Σ c ( * ) are NOT doublet in SU(2) !! + + λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF “Strong coupling problem” in λ f ・ λ F -dependent interaction (isospin) ≈ G F 2 Log(M F )

3. “Strong coupling problem” in heavy mass limit Heavy fermion in matter ≈ G F 2 Log(M F ) ≈ G F Brief summary Heavy flavor fermion Ψ with mass M F Fermion ψ (matter) Logarithmic enhancement in loop diagram in heavy mass limit (M F →∞) + + SY and Sudoh, arXiv Quark matter with color SU(n=3) ψ: light quark Ψ: charm (bottom) quark → 3 c representation of color SU(3) λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF λf・λFλf・λF “Strong coupling problem” in λ f ・ λ F -dependent interaction (color) Quark matter with charm (bottom) quark at zero temperature may not be perturbative system, but be strongly coupled one!!

What is D/D-nucleon interaction ? 1. Introduction D*+N (2947 MeV) D+N (2803 MeV) D and nucleon D*+N D+N bound state resonant states SY and Sudoh, PRD80, (2009) Yamaguchi, Ohkoda, SY, Hosaka, PRD84, (2011) Yamaguchi, Ohkoda, SY, Hosaka, PRD85, (2012) `Exotic channel‘ Only DN and D*N channel Heavy quark symmetry + π exchange (tensor force) C<0 cqqq q