Estimated Time for Completion: 30 minutes Experience Level: Lower Compliant Stroke Amplifier MSC.Marc 2005r2 MSC.Patran 2005r2.

Slides:



Advertisements
Similar presentations
Landing Gear Strut Estimated time required: 15 min
Advertisements

Drinking Straw Estimated Time for Completion: ~45min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
O-Ring Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Rubber Seal Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
AE4131 ABAQUS Lecture Part III
Introduction to ABAQUS 27 th February, Units Before starting to define any model, you need to decide which system of units you will use. ABAQUS.
1 Impulsive Force GUI Familiarity Level Required: Lower Estimated Time Required: 20 minutes MSC.ADAMS 2005 r2.
Define a Composite Material
Controls Toolkit in ADAMS/View
Spring Design using Parametric Modeling
WORKSHOP 8 NONLINEAR CONTACT
Creep of Tube Estimated Time for Completion: 5 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
WORKSHOP 7 TAPERED PLATE WS7-1 NAS120, Workshop 7, November 2003.
ANSYS Fundamentals This document contains no technical data subject to the EAR or the ITAR.
1 Pulley System GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
WS Mar120 - Patran Day 1 Overview - Meshing FINITE ELEMENT MODEL OF A 3-D CLEVIS AND PROPERTY ASSIGNMENT.
Using MD Nastran/Patran and MSC.Adams together
INTERFERENCE FITS MAR Interference Fits.
CONTACT ANALYSIS USING 3D BOLTS
Gear Train MSC.ADAMS 2005 r2 GUI Familiarity Level Required: Low
WORKSHOP 11 SPACECRAFT FAIRING
1 F F Double-Cantilevered Bar Estimated time for completion: ~20 min Experience Level: Lower MSC.Patran 2005 r2.
Staple Pin Simulation Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
Crush Pipe Problem Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
1 Projectile Estimated time required: 20 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
1 MSC ADAMS 2005 r2 Crank Slider Mechanism on Incline Plane GUI Familiarity Level Required: Lower Estimated Time Required: 1 hour.
1 Short-Long Arm Suspension GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
Torque Controlled Dies with Twist Transfer Estimated Time for Completion: 5 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
Modal Analysis of a Simple Cantilever
1 Extrusion GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Hertz Contact Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
WORKSHOP 1 STEADY STATE HEAT TRANSFER WORKSHOP 1 STEADY STATE HEAT TRANSFER.
1 Oscillating Slider Estimated time required: 25 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
1 Bridge Truss Structure Estimated time required: ~30 min Experience level: Lower MSC.Patran 2005 r2.
BREAK FORMING MAR Break Forming Exercise. WS MAR 120, Break Forming, June 2004MAR Break Forming Exercise Model Description: A flat sheet.
LANDING GEAR STRUT ANALYSIS
Micro-valve Estimated Time for Completion: ~30min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
WS8C-1 WORKSHOP 8C TENSION COUPON NAS120, Workshop 8C, November 2003.
Mar120, Workshop 7, December 2001 WORKSHOP 7 METAL FORMING A PAPER CLIP WORKSHOP 7 METAL FORMING A PAPER CLIP.
WORKSHOP 4 TRANSIENT HEAT TRANSFER ANALYSIS. WS4-2.
WS Mar120 - Patran Day 1 Overview - Results POST PROCESSING OF STRESS RESULTS.
WS-1 WORKSHOP Define Equivalent Section Plate Properties NAS121, Workshop, May 6, 2002.
BALL JOINT ANALYSIS F=600 lbf MAR 120 – Ball Joint Analysis.
1 Stadium Display Truss – Troubleshooting Estimated time required: 35 min Experience level: Higher MD Patran 2005 r2.
WS6-1 WORKSHOP 6 BRIDGE TRUSS NAS120, Workshop 6, November 2003.
GEOMETRY MODEL OF A 3-D CLEVIS
ANALYSIS OF A CANTILEVER BEAM
1 Assemble Exploded Model GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Workshop 5-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 5 Stiffened Plate Subjected to Pressure Load.
WS8B-1 WORKSHOP 8B TENSION COUPON NAS120, Workshop 8B, November 2003.
Coupled Transient Cooling Fin Estimated Time for Completion: 5 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
WS4-1 WORKSHOP 4 Stadium Truss NAS120, Workshop 4, November 2003.
WS9A-1 WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER NAS120, Workshop 9A, November 2003.
1 Forklift Estimated time required: 20 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
WORKSHOP 15 PARASOLID MODELING NAS120, Workshop 15, November 2003 WS15-1.
Can Opener Estimated Time for Completion: 20 minutes Experience Level: Higher MSC.Marc 2005r2 MSC.Patran 2005r2.
Workshop 9-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
WS8A-1 WORKSHOP 8A TENSION COUPON NAS120, Workshop 8A, November 2003.
Mar120 - Test Specimen Necking NECKING OF A TEST SPECIMEN Symmetry Plane.
NAS133, Workshop 2, August 2011 Copyright© 2011 MSC.Software Corporation WS2 - 1 WORKSHOP 2 SOLID-TO-SOLID CONTACT.
MAR120, Workshop 1, December 2001 WORKSHOP 01 LINEAR AND NONLINEAR ANALYSIS OF A CANTILEVER BEAM.
Stress Relaxation Workshop Six REFERENCE: Training Manual Implicit Creep (4-32)
WS16-1 MAR120, Workshop 16, December 2001 WORKSHOP 16 SPECTRUM RESPONSE ANALYSIS OF A TRANSMISSION TOWER
Workshop 7B-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 7B Structure With Spring Support.
Workshop 4-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 4 Structure Subjected to Enforced Displacement at an incline.
THERMO-STRUCTURAL ANALYSIS
WORKSHOP 2 SOLID-TO-SOLID CONTACT
FREQUENCY RESPONSE ANALYSIS OF TRANSMISSION TOWER
NECKING OF A TEST SPECIMEN
ENFORCED MOTION IN TRANSIENT ANALYSIS
Presentation transcript:

Estimated Time for Completion: 30 minutes Experience Level: Lower Compliant Stroke Amplifier MSC.Marc 2005r2 MSC.Patran 2005r2

2 Topics Covered Using beam elements Creating non-spatial field Mapping function to tabular field Creating time-dependent boundary condition Large-displacement transient analysis with Newmark time integration scheme Using adaptive increments Plotting and graphing the results Creating derived results Exporting results to text file

3 In this example problem, a patented compliant stroke amplifier* is subjected to a sinusoidal input displacement having the amplitude of 6 um and the frequency of 10 Hz. The output force is 350 uN constant. The mechanism is expected to undergo large displacements. Since the operating frequency is high, dynamics effect will be included using transient analysis. We will use Patran to complete the problem description from a given 2D meshed model and analyze it by using Marc. Problem Description * Hetrick J. and Kota S., Displacement amplification structure and device, U.S. patent 6,557,436.

4 Summary of Model Constrain all DOFs except Y-direction Constrain all DOFs Constant output force in Y-direction Varying input disp in Y-direction 6*sin(2  *10*t) Output node Input node

5 Goal Dynamic performance is important in a compliant system design. For some problems, the minimal peak force at the input of the mechanism is desired so that the size of the actuation system can be minimized. We will determine the peak input force of this mechanism after the mechanism reaches the steady state.

6 Expected Results Peak input force after reaching steady state is 9305 uN.

7 Create Database a.Click File menu / Select New b.In File Name enter amplifier.db c.Click OK d.Select Analysis Code to be MSC. Marc e.Click OK a bcde

8 Import Model a.Click File menu / Select Import b.Select Source to be MSC. Patran DB c.Locate and select file amplifier_model.db d.Click Apply a b cd

9 Turn On Element Numbering and Display Notes: This will help identify elements when assigning section properties and help verify the beam orientations. ac b a.Click Display menu / Select Finite Elements b.Check Label for Bar c.Click Apply d.Click Display menu / Select Load/BC/Elem.Props e.Select Beam Display to be 3D: FullSpan f.Click Apply def Beam geometries will be displayed once beam properties are assigned in later steps.

10 Define Material a.Click Materials icon b.In Material Name, enter polysilicon c.Click Input Properties d.In Elastic Modulus, enter 16e4 e.In Poisson ratio, enter 0.26 f.In Density, 2330e-18 g.Click OK h.Click Apply a bchd e fg

11 Define Section Properties Repeat (d) – (g) for all other sections by changing New Section Name and Section Height (H), with information shown in the table on the next page. a.Click Tools menu / Select Beam Library b.Click arrow to find a solid rectangular cross section c.Select a solid rectangular cross section d.In New Section Name, enter sect01 e.In W, enter 4.5 f.In H, enter g.Click Apply a bcdefg

12 Dimensions of Beam Sections Section Number Section Height Section Number Section Height Section heights for all sections in the compliant stroke amplifier Change these text fields using values shown in the table Click Apply for each creation of section

13 Define Element Properties Repeat (e) – (l) for all other elements by changing Property Set Name, Section Name, and Application Region a a.Click Properties icon b.Select Action to be Create c.Select Object to be 1D d.Select Type to be General Beam e.In Property Set Name, enter prop01 f.Click Input Properties g.In Section Name, enter sect01 or click Properties icon to select sect01 h.Click Mat Prop Name icon to select polysilicon i.In XZ Plane Definition, enter j.Click OK k.In Application Region, enter Element 1 l.Click Apply Notes: Material Name and XZ Plane Definition from the previously entered data will be automatically loaded and need not be changed. This Beam Element selection tool appears when Application Region textbox is selected. This can be used to conveniently select elements from screen when they need to be modified. bc d ef g hijkl

14 Complete Mechanism After the completion of assigning element properties, the mechanism should look like the following.

15 Create Time-Dependent Field ab cd ef ghij k lmnopqr a.Click Fields icon b.Select Action to be Create c.Select Object to be Non Spatial d.Select Method to be Tabular Input e.In Field Name, enter sinusoid f.Check Time (t) g.Click Options h.In Maximum Number of t, enter 200 i.Click OK j.Click Input Data k.Click Map Function to Table l.In PCL Expression, enter sinr(2* *10*’t) m.In Start Time, enter 0 n.In End Time, enter 0.5 o.In Number of Points, enter 200 p.Click Apply q.Click OK r.Click Apply

16 Create Load Case b c de a.Click Load Case icon b.Select Action to be Create c.In Load Case Name, enter dynamic_loadcase d.Select Type to be Time Dependent e.Click Apply a Make sure that Make Current checkbox is checked. This will set the new load case active and the subsequent loads/bcs will be added to this load case. Notes: If the type of the current load case is Static, loads/bcs being added will not be allowed for the use of time-dependent fields

17 Create Boundary Conditions Repeat (d) – (m) for the following: bc defghi jkl mn a a.Click Loads/BCs icon b.Select Action to be Create c.Select Object to be Displacement d.In New Set Name, enter fixed e.Click Input Data f.In Translations, enter g.In Rotations, enter h.Click OK i.Click Select Application Region j.Select Geometry Filter to be FEM k.In Application Region, enter Node l.Click OK m.Click Apply New Set NameTranslationsRotationApplication Region Spatial DependenceTime/Freq. DependenceSpatial Dependence slider Node 1 42 input f:sinusoid (select (n.)) Node 1

18 a.Select Object to be Force b.In New Set Name, enter output c.Click Input Data d.In Force, enter e.Click OK f.Click Select Application Region g.In Application Region, enter Node 42 h.Click OK i.Click Apply Create Load abc d efghi

19 Set Job Parameters a a.Click Analysis icon b.Click Job Parameters c.Check Use Tables / Uncheck Free Field and Extended d.Click OK bcd Notes: A time-dependent field is considered a table and Use Tables option must be checked to read this field correctly.

20 a.Click Load Step Creation b.In Load Step Name, enter dynamic step c.Select Solution Type to be Transient Dynamic d.Click Solution Parameters e.Click Load Increment Params f.Select Increment Type to be Adaptive g.In Trial Time Step Size, enter h.In Minimum Time Step, enter i.In Maximum Time Step, enter 0.1 j.In Max # of Steps, enter 200 k.In Total Time, enter 0.5 l.Select Time Integration Scheme to be Newmark m.Click OK n.Click OK o.Click Select Load Case p.Select dynamic_loadcase q.Click OK r.Click Apply s.Click Cancel Create Load Step abc d efikl o pqrsngjhm

21 Select load step a.Click Load Step Selection b.In Step Select, select dynamic step and unselect Default Static Step c.Click OK d.Click Apply ** Wait until analysis is completed ** Read results file e.Select Action to be Read Results f.Click Select Results File g.Locate file amplifier.t16 h.Click OK i.Click Apply abcdefghi Run Analysis and Read Results

22 Review Results bcde a.Click Results icon b.In Select Result Cases, select all increments c.In Select Fringe Result, select Displacement, Translation d.In Select Deformation Result, select Displacement, Translation e.Click Apply The following will plot solutions for all steps, showing how the mechanism is deformed. a

23 Graph Input Force a.Select Object to be Graph b.Click Target Entities icon c.Select Target Entity to be Nodes d.In Select Nodes, enter Node 1 or select input node from screen e.Click Apply f.Click Select Results icon g.In Select Result Case, select all increments h.In Select Y Result, select Force, Nodal Reaction i.Select Quantity to be Y Component j.Select Variable to be Time k.Click Apply abcdefghijk Force in the first cycle is a little larger than the subsequent cycles. The peak value once the mechanism reaches the steady- state will be investigated.

24 Create Result Case a.Select Object to be Results b.Select Method to be Minimum c.Click Target Entities icon d.Select Target Entity to be Nodes e.In Select Nodes, enter Node 1 or select input node from screen f.Click Apply g.Click Select Results icon h.In Select Result Case, select increments at Time after 0.3 i.In New Result Case Name, enter MinInpForceY j.In New Subcase Name, enter MinInpForceY k.In Select Result, select Force, Nodal Reaction l.Select Quantity to be Y Component m.Click Apply Repeat (b) – (m) for the following: MethodNew Result Case NameNew Subcase Name MaximumMaxInpForceY abcdefg h ijklm If the list of increments does not appear, click this icon to show the list. Create results for minimum and maximum input forces after reaching steady-state (after 0.3 sec)

25 Export Results to a Text File ab cde f ghi a.Select Object to be Report b.Select Method to be Overwrite File c.In Select Result Case, select MaxInpForceY and MinInpForceY d.In Select Report Result, select Force, Nodal Reaction e.In Select Quantities, select Y Component f.Click Display Attributes icon g.In File Name, enter amplifier.rpt h.Click Apply i.Go to the working folder and open amplifier.rpt to read minimum and maximum values of Y-Force at the input. The peak Y-Force at the input is 9305 uN.

26 Further Analysis (Optional) Plot the output displacement over time and determine the amplitude. Add a constant component to the sinusoidal displacement input in either positive or negative direction. Observe how the maximum input force and the output amplitude change. Try increasing the input frequency to be higher (i.e. 50 Hz). Observe the shape and amplitude of the output displacement over time.