1 15.053 Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes.

Slides:



Advertisements
Similar presentations
3.6 Support Vector Machines
Advertisements

Solving Linear Programming Problems
1 Chapter 14 Making the most of things: Linear Programming.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
February 21, 2002 Simplex Method Continued
Thursday, April 11 Some more applications of integer
Introduction to Algorithms 6.046J/18.401J/SMA5503
Tuesday, May 7 Integer Programming Formulations Handouts: Lecture Notes.
Thursday, March 7 Duality 2 – The dual problem, in general – illustrating duality with 2-person 0-sum game theory Handouts: Lecture Notes.
February 7, 2002 A brief review of Linear Algebra Linear Programming Models Handouts: Lecture Notes.
February 14, 2002 Putting Linear Programs into standard form
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Artificial Variables, 2-Phase and Big M Methods
Duality for linear programming. Illustration of the notion Consider an enterprise producing r items: f k = demand for the item k =1,…, r using s components:
Simplex Method MSci331—Week 3~4.
© 2012 National Heart Foundation of Australia. Slide 2.
Chapter 5 Test Review Sections 5-1 through 5-4.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 5 th Edition Chapter 13 Supplement Roberta.
25 seconds left…...
We will resume in: 25 Minutes.
WOOD 492 MODELLING FOR DECISION SUPPORT Lecture 12 Duality Theory.
Dantzig-Wolfe Decomposition
PSSA Preparation.
IEOR 4004 Midterm Review (part I)
LINEAR PROGRAMMING Modeling a problem is boring --- and a distraction from studying the abstract form! However, modeling is very important: --- for your.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Geometry and Theory of LP Standard (Inequality) Primal Problem: Dual Problem:
IEOR 4004 Midterm review (Part II) March 12, 2014.
EMGT 501 HW #1 Solutions Chapter 2 - SELF TEST 18
The Simplex Method and Linear Programming Duality Ashish Goel Department of Management Science and Engineering Stanford University Stanford, CA 94305,
Linear Programming: Simplex Method and Sensitivity Analysis
SOLVING LINEAR PROGRAMS USING EXCEL Dr. Ron Lembke.
ISM 206 Lecture 4 Duality and Sensitivity Analysis.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 99 Chapter 4 The Simplex Method.
Computational Methods for Management and Economics Carla Gomes
7(2) THE DUAL THEOREMS Primal ProblemDual Problem b is not assumed to be non-negative.
ISM 206 Lecture 4 Duality and Sensitivity Analysis.
Chapter 4 The Simplex Method
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
Duality Theory 對偶理論.
Duality Theory LI Xiaolei.
Introduction to Operations Research
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
A model consisting of linear relationships representing a firm’s objective and resource constraints Linear Programming (LP) LP is a mathematical modeling.
Chapter 6 Simplex-Based Sensitivity Analysis and Duality
Advanced Operations Research Models Instructor: Dr. A. Seifi Teaching Assistant: Golbarg Kazemi 1.
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
1 1 Slide © 2005 Thomson/South-Western Simplex-Based Sensitivity Analysis and Duality n Sensitivity Analysis with the Simplex Tableau n Duality.
Part 3 Linear Programming 3.3 Theoretical Analysis.
Approximation Algorithms Duality My T. UF.
Part 3 Linear Programming 3.3 Theoretical Analysis.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Duality for linear programming.
Chap 9. General LP problems: Duality and Infeasibility
The Simplex Method: Standard Minimization Problems
Part 3 Linear Programming
Dual simplex method for solving the primal
ENGM 631 Optimization.
Chapter 5. The Duality Theorem
Chapter-III Duality in LPP
DUALITY THEORY Reference: Chapter 6 in Bazaraa, Jarvis and Sherali.
Presentation transcript:

Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes

2 Bounds One of the great contributions of optimization theory (and math programming) is the providing of upper bounds for maximization problems We can prove that solutions are optimal For other problems, we can bound the distance from optimality

3 A 4-variable linear program David has minerals that he will mix together and sell for profit. The minerals all contain some gold content, and he wants to ensure that the mixture has 3% gold, and each bag will weigh 1 kilogram. Mineral 1: 2% gold, $3 profit/kilo Mineral 2: 3% gold, $4 profit/kilo Mineral 3: 4% gold, $6 profit/kilo Mineral 4: 5% gold, $8 profit/kilo maximize z = 3x 1 + 4x 2 +6x 3 + 8x 4 subject to x 1 + x 2 + x 3 + x 4 = 1 2x 1 + 3x 2 +4x 3 + 5x 4 = 3 x 1, x 2, x 3, x 4 0

4 A 4-variable linear program maximize z = 3x 1 + 4x 2 +6x 3 + 8x 4 subject to x 1 + x 2 + x 3 + x 4 = 1 2x 1 + 3x 2 +4x 3 + 5x 4 = 3 x 1, x 2, x 3, x 4 0

5 Obtaining a Bound Subtract 8 times constraint 1 from the objective function. -z – 5 x 1 – 4 x 2 – 2 x 3 = -8 z + 5 x 1 + 4x x 3 = 8 Does this show that z 8? YES!

6 Obtaining a Second Bound: Treat the operation as pricing out Subtract 3 * constraint 1 and subtract constraint 2 from the objective function. -z – 2x 1 – 2 x 2 – 1x 3 = -6 z + 2 x 1 + 2x x 3 = 6 Thus z 6! Which bound is better: 6 or 8? Prices

7 Obtaining the Best Bound: Formulate the problem as an LP Prices A: 3 - y 1 - 2y 2 0 y 1 + 2y 2 3 B: 4 - y 1 - 3y 2 0 y 1 + 3y 2 4 C: 6 - y 1 - 4y 2 0 y 1 + 4y 2 6 D: 8 - y 1 - 5y 2 0 y 1 + 5y 2 8 minimize y 1 + 3y 2

8 The problem that we formed is called the dual problem minimize y 1 + 3y 2 Subject to y 1 + 2y 2 y 1 + 3y 2 y 1 + 5y 2 y 1 + 4y 2 y 1 a nd y 2 are unconstrained in sign

9 Summary of previous slides If reduced costs are non-positive then we have an upper bound on the objective value The problem of finding the least upper bound is a linear program, and is referred to as the dual of the original linear program. To do: express duality in general notation. To do: show that the shadow prices solve the dual, and the bound is the optimal solution to the original problem

10 PRIMAL PROBLEM: maximize subject to z = 3x 1 + 4x 2 +6x 3 + 8x 4 x 1 + x 2 + x 3 + x 4 = 1 2x 1 + 3x 2 +4x 3 + 5x 4 = 3 x 1, x 2, x 3, x 4 0 maximize y 1 + 3y 2 subject to y 1 + 2y 2 y 1 + 3y 2 y 1 + 4y 2 y 1 + 5y 2 Observation 1. The constraint matrix in the primal is the transpose of the constraint matrix in the dual. Observation 2. The RHS coefficients in the primal become the cost coefficients in the dual. DUSL PROBLEM:

11 PRIMAL PROBLEM: maximize subject to z = 3x 1 + 4x 2 +6x 3 + 8x 4 x 1 + x 2 + x 3 + x 4 = 1 2x 1 + 3x 2 +4x 3 + 5x 4 = 3 x 1, x 2, x 3, x 4 0 DUSL PROBLEM: maximize y 1 + 3y 2 subject to y 1 + 2y 2 y 1 + 3y 2 y 1 + 4y 2 y 1 + 5y 2 Observation 3. The cost coefficients in the primal become the RHS coefficients in the dual. Observation 4. The primal (in this case) is a max problem with equality constraints and non-negative variables The dual (in this case) is a minimization problem with constraints and variables unconstrained in sign.

12 PRIMAL PROBLEM (in standard form): max z = c 1 x 1 + c 2 x 2 + c 3 x 3 + … + c n x n s.t. a 11 x 1 + a 12 x 2 + a 13 x 3 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + … + a 2n x n = b 2 … a m1 x 1 + a m2 x 2 + a m3 x 3 + … + a mn x n = bm x j 0 for j = 1 to n. DUAL PROBLEM: max v = ??? s.t. ??? What is the dual problem in terms of the notation given above?

13 PRIMAL PROBLEM (in standard form): max z = c 1 x 1 + c 2 x 2 + c 3 x 3 + … + c n x n s.t. a 11 x 1 + a 12 x 2 + a 13 x 3 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + … + a 2n x n = b 2 … a m1 x 1 + a m2 x 2 + a m3 x 3 + … + a mn x n = b m x j 0 for j = 1 to n. DUAL PROBLEM: max v = b 1 y 1 + b 2 y 2 + b 3 y 3 + … +b n y n s.t. a 11 y 1 + a 21 y 2 + a 31 y 3 + … + a m1 y m c 1 a 12 y 1 + a 22 y 2 + a 32 y 3 + … + a m2 y m c 2 … a 1n y 1 + a 2n y 2 + a 3n y 3 + … + a mn y m c n

14 Theorem. Suppose that x is any feasible solution to the primal, and y is any feasible solution to the dual. Then j=1..n c j x j i=1..n y i b i (Max Min) Proof. j=1..n c j x j i=1...n j=1...m (y i a ij ) x i j=1...m i=1...n y i (a ij x j ) j=1...m y i b i Weak Duality Theorem

15 Unboundedness Property Theorem. Suppose that the primal (dual) problem has an unbounded solution. Then the dual (primal) problem has no feasible solution. Proof. Suppose that y was feasible for the dual. Then every solution to the primal problem is unbounded above by j=1...m y i b i

16 Strong Duality Theorem Theorem. If the primal problem has a finite optimal solution value, then so does the dual problem, and these two values are the same.

17 Strong Duality Illustrated Prices Optimal dual solution: y 1 = –1/3, y 2 = 5/3, v = 14/3 Optimal primal solution: x 1 = 2/3, x 2 = 0, x 3 = 0, x 4 = 1/3 z = 14/3

18 Strong Duality Illustrated: the final tableau Optimal primal solution: x 1 = 2/3, x 2 = 0, x 3 = 0, x 4 = 1/3 v = 14/3 Observation The cost coeffients satisfy complementary slackness

19 Summary If we take an LP in standard form (max), we can formulate a dual problem Weak Duality: Each solution of the dual gives an upper bound on the maximum objective value for the primal Strong duality: if there are feasible solutions to the primal and dual, then the optimal objective value for both problems is the same.

20 Shadow prices solve the dual! Theorem. Suppose that the primal problem has a finite optimal solution value. Then the shadow prices for the primal problem form an optimal solution to the dual problem. (And the objective values are the same.) Davids Mineral Problem

21 FACT: Optimal simplex multipliers are shadow prices. Shadow prices

22 Summary The dual problem to a maximizing LP provides upper bounds on the optimal objective function The maximum solution value for the primal is the same as the minimum solution value for the dual The shadow prices are optimal for the dual LP Next: alternative optimality conditions

23 Primal Problem max Σj=1..m cj xj s.t. Σj=1..n aij xj = bi for i = 1 to m xj 0 for all j = 1 to n Dual Problem min j=1..m yi bi s.t. i=1..m yi aij cj for j = 1 to n Optimality Condition 1. A solution x* is optimal for the primal problem if it is a basic feasible solution and the tableau satisfies the optimality conditions. Optimality Condition 2. A solution x* is optimal for the primal problem if it is feasible and if there is a feasible solution y* for the dual with j=1..m cj x*j = j=1..m y*i bi

24 Primal Problem max Σj=1..m cj xj s.t. Σj=1..n aij xj = bi for i = 1 to m xj 0 for all j = 1 to n Dual Problem min Σj=1..m yi bi s.t. Σi=1..m yi aij cj for j = 1 to n Complementary Slackness Conditions. – Suppose that y is feasible for the dual, and let cj= cj - Σi=1..myi aij. Suppose x is feasible for the primal. Theorem (complementary slackness). x and y are optimal for the primal and dual if and only if cj xj = 0 for all j.

25 Complementary Slackness Illustrated prices

26 Next Lecture on Duality Dual linear programs in general form Optimality Conditions in general form. Illustrating Duality with 2-person 0-sum game theory

27 Coverage for first midterm (Closed book exam) Formulations 2D graphing and finding opt. solution Setting up an LP in standard form The simplex algorithm starting with a bfs Phase 1 of the simplex algorithm Interpreting sensitivity analysis, including shadow prices, and ranges, and reduced costs Pricing out Using tableaus to determine shadow prices, reduced costs, and ranges