Bayesian networks Chapter 14 Section 1 – 2. Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact.

Slides:



Advertisements
Similar presentations
Bayesian networks Chapter 14 Section 1 – 2. Outline Syntax Semantics Exact computation.
Advertisements

Probabilistic Reasoning Bayesian Belief Networks Constructing Bayesian Networks Representing Conditional Distributions Summary.
BAYESIAN NETWORKS. Bayesian Network Motivation  We want a representation and reasoning system that is based on conditional independence  Compact yet.
Identifying Conditional Independencies in Bayes Nets Lecture 4.
Bayesian Networks. Introduction A problem domain is modeled by a list of variables X 1, …, X n Knowledge about the problem domain is represented by a.
1 22c:145 Artificial Intelligence Bayesian Networks Reading: Ch 14. Russell & Norvig.
Bayesian Networks Chapter 14 Section 1, 2, 4. Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) March, 16, 2009.
Review: Bayesian learning and inference
Bayesian Networks Chapter 2 (Duda et al.) – Section 2.11
Bayesian Networks. Motivation The conditional independence assumption made by naïve Bayes classifiers may seem to rigid, especially for classification.
Artificial Intelligence Probabilistic reasoning Fall 2008 professor: Luigi Ceccaroni.
Probabilistic Reasoning Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 14 (14.1, 14.2, 14.3, 14.4) Capturing uncertain knowledge Probabilistic.
1 Data Mining with Bayesian Networks (I) Instructor: Qiang Yang Hong Kong University of Science and Technology Thanks: Dan Weld, Eibe.
Bayesian networks Chapter 14 Section 1 – 2.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Lecture 14 Jim Martin.
Bayesian Belief Networks
Bayesian Belief Network. The decomposition of large probabilistic domains into weakly connected subsets via conditional independence is one of the most.
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
5/25/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Bayesian Reasoning. Tax Data – Naive Bayes Classify: (_, No, Married, 95K, ?)
Bayesian Networks Russell and Norvig: Chapter 14 CMCS421 Fall 2006.
Bayesian networks More commonly called graphical models A way to depict conditional independence relationships between random variables A compact specification.
Probabilistic Reasoning
Quiz 4: Mean: 7.0/8.0 (= 88%) Median: 7.5/8.0 (= 94%)
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Advanced Artificial Intelligence
Bayesian Networks Material used 1 Random variables
Artificial Intelligence CS 165A Tuesday, November 27, 2007  Probabilistic Reasoning (Ch 14)
Read R&N Ch Next lecture: Read R&N
Bayesian networks Chapter 14. Outline Syntax Semantics.
Bayesian Networks Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell,
An Introduction to Artificial Intelligence Chapter 13 & : Uncertainty & Bayesian Networks Ramin Halavati
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes March 13, 2012.
Probabilistic Belief States and Bayesian Networks (Where we exploit the sparseness of direct interactions among components of a world) R&N: Chap. 14, Sect.
Bayesian networks. Motivation We saw that the full joint probability can be used to answer any question about the domain, but can become intractable as.
1 Chapter 14 Probabilistic Reasoning. 2 Outline Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions.
2 Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions Exact inference by enumeration Exact.
Uncertainty Chapter 13. Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes' Rule.
1 Monte Carlo Artificial Intelligence: Bayesian Networks.
An Introduction to Artificial Intelligence Chapter 13 & : Uncertainty & Bayesian Networks Ramin Halavati
Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? Example.
Probabilistic Reasoning [Ch. 14] Bayes Networks – Part 1 ◦Syntax ◦Semantics ◦Parameterized distributions Inference – Part2 ◦Exact inference by enumeration.
Marginalization & Conditioning Marginalization (summing out): for any sets of variables Y and Z: Conditioning(variant of marginalization):
Bayesian Networks CSE 473. © D. Weld and D. Fox 2 Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential.
Review: Bayesian inference  A general scenario:  Query variables: X  Evidence (observed) variables and their values: E = e  Unobserved variables: Y.
CPSC 7373: Artificial Intelligence Lecture 5: Probabilistic Inference Jiang Bian, Fall 2012 University of Arkansas at Little Rock.
1 Probability FOL fails for a domain due to: –Laziness: too much to list the complete set of rules, too hard to use the enormous rules that result –Theoretical.
Belief Networks Kostas Kontogiannis E&CE 457. Belief Networks A belief network is a graph in which the following holds: –A set of random variables makes.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) Nov, 13, 2013.
Bayesian networks Chapter 14 Slide Set 2. Constructing Bayesian networks 1. Choose an ordering of variables X 1, …,X n 2. For i = 1 to n –add X i to the.
PROBABILISTIC REASONING Heng Ji 04/05, 04/08, 2016.
Chapter 12. Probability Reasoning Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
Web-Mining Agents Data Mining Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny (Übungen)
A Brief Introduction to Bayesian networks
Another look at Bayesian inference
Reasoning Under Uncertainty: Belief Networks
Bayesian Networks Chapter 14 Section 1, 2, 4.
Bayesian networks Chapter 14 Section 1 – 2.
Presented By S.Yamuna AP/CSE
Web-Mining Agents Data Mining
Qian Liu CSE spring University of Pennsylvania
Read R&N Ch Next lecture: Read R&N
Probabilistic Reasoning; Network-based reasoning
CS 188: Artificial Intelligence
CS 188: Artificial Intelligence Fall 2007
Belief Networks CS121 – Winter 2003 Belief Networks.
Bayesian networks Chapter 14 Section 1 – 2.
Probabilistic Reasoning
Presentation transcript:

Bayesian networks Chapter 14 Section 1 – 2

Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions Syntax: –a set of nodes, one per variable –a directed, acyclic graph (link ≈ "directly influences") –a conditional distribution for each node given its parents: P (X i | Parents (X i ))

Example Topology of network encodes conditional independence assertions: Weather is independent of the other variables Toothache and Catch are conditionally independent given Cavity

Example I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar? Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge: –A burglar can set the alarm off –An earthquake can set the alarm off –The alarm can cause Mary to call –The alarm can cause John to call

Example contd.

Compactness If each variable has no more than k parents, the complete network requires O(n · 2 k ) numbers I.e., grows linearly with n, vs. O(2 n ) for the full joint distribution For burglary net, = 10 numbers (vs = 31)

Semantics

Constructing Bayesian networks 1. Choose an ordering of variables X 1, …,X n 2. For i = 1 to n –add X i to the network –select parents from X 1, …,X i-1 such that P (X i | Parents(X i )) = P (X i | X 1,... X i-1 ) This choice of parents guarantees: P (X 1, …,X n ) = π i =1 P (X i | X 1, …, X i-1 ) (chain rule) = π i =1 P (X i | Parents(X i )) (by construction) n n

Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? Example

Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? Example

Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? P(B | A, J, M) = P(B)? Example

Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)?No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A,J, M) = P(E | A)? P(E | B, A, J, M) = P(E | A, B)? Example

Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)?No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A,J, M) = P(E | A)? No P(E | B, A, J, M) = P(E | A, B)? Yes Example

Example contd. Deciding conditional independence is hard in non-causal directions (Causal models and conditional independence seem hardwired for humans!) Network is less compact

Example contd. Deciding conditional independence is hard in non-causal directions (Causal models and conditional independence seem hardwired for humans!) Network is less compact: = 13 numbers needed

Another example

Example from Medical Diagnostics Network represents a knowledge structure that models the relationship between medical difficulties, their causes and effects, patient information and diagnostic tests Visit to Asia Tuberculosis or Cancer XRay Result Dyspnea BronchitisLung Cancer Smoking Patient Information Medical Difficulties Diagnostic Tests

Example from Medical Diagnostics Relationship knowledge is modeled by deterministic functions, logic and conditional probability distributions Patient Information Diagnostic Tests Visit to Asia Tuberculosis or Cancer XRay Result Dyspnea BronchitisLung Cancer Smoking Tuber Present Absent Lung Can Present Absent Present Absent Tub or Can True False Medical Difficulties Tub or Can True False Bronchitis Present Absent Present Absent Present Absent 0.l Dyspnea

Example from Medical Diagnostics Propagation algorithm processes relationship information to provide an unconditional or marginal probability distribution for each node The unconditional or marginal probability distribution is frequently called the belief function of that node

As a finding is entered, the propagation algorithm updates the beliefs attached to each relevant node in the network Interviewing the patient produces the information that “Visit to Asia” is “Visit” This finding propagates through the network and the belief functions of several nodes are updated

Further interviewing of the patient produces the finding “Smoking” is “Smoker” This information propagates through the network

Finished with interviewing the patient, the physician begins the examination The physician now moves to specific diagnostic tests such as an X-Ray, which results in a “Normal” finding which propagates through the network Note that the information from this finding propagates backward and forward through the arcs

The physician also determines that the patient is having difficulty breathing, the finding “Present” is entered for “Dyspnea” and is propagated through the network The doctor might now conclude that the patient has bronchitis and does not have tuberculosis or lung cancer

Summary Bayesian networks provide a natural representation for (causally induced) conditional independence Topology + conditional probability = compact representation of joint distribution Generally easy for domain experts to construct