Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,

Slides:



Advertisements
Similar presentations
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Advertisements

9th TTF Spain September 11, 2002 B. J. Peterson, NIFS, Japan page 1 Radiative Collapse and Density Limit in the Large Helical Device.
APS-DPP-2005-LeBlanc-1 Update on MPTS B.P. LeBlanc Princeton Plasma Physics Laboratory NSTX Results Review July 26-27, 2006 Princeton, NJ.
DPP 2006 Reduction of Particle and Heat Transport in HSX with Quasisymmetry J.M. Canik, D.T.Anderson, F.S.B. Anderson, K.M. Likin, J.N. Talmadge, K. Zhai.
Remote sensing in meteorology
Assessment of Quasi-Helically Symmetric Configurations as Candidate for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
49th Annual Meeting of the Division of Plasma Physics, November , 2007, Orlando, Florida Ion Temperature Measurements and Impurity Radiation in.
N=4,m=0 n=4,m=1 n=8,m=0 The HSX Experimental Program Program F. Simon B. Anderson, D.T. Anderson, A.R. Briesemeister, C. Clark, K.M.Likin, J. Lore, H.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
RFX-mod Workshop – Padova, January Experimental QSH confinement and transport Fulvio Auriemma on behalf of RFX-mod team Consorzio RFX, Euratom-ENEA.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
HSX Thomson Scattering Experiment K. Zhai, F.S.B. Anderson, and D.T. Anderson HSX Plasma Laboratory University of Wisconsin-Madison, The HSX Thomson Scattering.
30 th EPS conference, St. Petersburg, Russia, July, 7-11, 2003 K.M.Likin On behalf of HSX Team University of Wisconsin-Madison, USA Comparison of Electron.
The toroidal current is consistent with numerical estimates of bootstrap current The measured magnetic diagnostic signals match predictions of V3FIT Comparisons.
Electron Density Distribution in HSX C. Deng, D.L. Brower Electrical Engineering Department University of California, Los Angeles J. Canik, S.P. Gerhardt,
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
Measurement of toroidal rotation velocity profiles in KSTAR S. G. Lee, Y. J. Shi, J. W. Yoo, J. Seol, J. G. Bak, Y. U. Nam, Y. S. Kim, M. Bitter, K. Hill.
Measurements of plasma turbulence by laser scattering in the Wendelstein 7-AS stellarator Nils P. Basse 1,2, S. Zoletnik, M. Saffman, P. K. Michelsen and.
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado ECE spectrum of HSX plasma at 0.5 T K.M.Likin, H.J.Lu, D.T.Anderson,
52 nd APS-DPP Annual Meeting, November, 8-12, 2010, Chicago, IL Plasma Pressure / BJ Contours Poloidal dimension Radial dimension Toroidal Angle (rad)
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado 1 Tesla Operation of the HSX Stellarator Simon Anderson, A.Almagri,
52nd Annual Meeting of the Division of Plasma Physics, November , 2010, Chicago, Illinois Non-symmetric components were intentionally added to the.
1) For equivalent ECRH power, off-axis heating results in lower stored energy and lower core temperature 2) Plasma flow is significantly reduced with off-axis.
Measurements of Magnetic Fluctuations in HSX S. Oh, A.F. Almagri, D.T. Anderson, C. Deng, C. Lechte, K.M. Likin, J.N. Talmadge, J. Schmitt HSX Plasma Laboratory,
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
APS, 44th Annual Meeting of the Division of Plasma Physics November 11-15, 2002; Orlando, Florida Hard X-ray Diagnostics in the HSX A. E. Abdou, A. F.
52nd Annual Meeting of the Division of Plasma Physics, November , 2010, Chicago, Illinois 5-pin Langmuir probe configured to measure floating potential.
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
4. Neoclassical vs Anomalous Transport: Crucial Issue for Quasisymmetric Stellarators Overview of HSX Experimental Program J.N. Talmadge, A. Abdou, A.F.
Upgrade of the HSX Thomson Scattering System HSX TS upgrade requirement K. Zhai, F. S. B. Anderson, D. T. Anderson, C. Clark, HSX Plasma Laboratory, Univ.
5.4 Stored Energy Crashes  Diamagnetic loop shows the plasma energy crashes at low plasma density  ECE signals are in phase with the energy crashes 
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
= Boozer g= 2*1e -7 *48*14*5361 =.7205 =0 in net current free stellarator, but not a tokamak. QHS Mirror Predicted Separatrix Position Measurements and.
52nd Annual Meeting of the Division of Plasma Physics, November 8 – November 12, 2010, Chicago, IL Development of Laser Blow-Off Impurity Injection Experiments.
51st Annual Meeting of the Division of Plasma Physics, November 2 - 6, 2009, Atlanta, Georgia ∆I BS = 170 Amps J BS e-root J BS i-root Multiple ambipolar.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
First Thomson Scattering Results on HSX K. Zhai, F.S.B. Anderson, and D.T. Anderson HSX Plasma Laboratory, U. of Wisconsin, Madison 1. Abstract 5. Summary.
Measurement of Electron Density Profile and Fluctuations on HSX C. Deng, D.L. Brower, W.X. Ding Electrical Engineering Department University of California,
Effects of Symmetry-Breaking on Plasma Formation and Stored Energy in HSX Presented by D.T. Anderson for the HSX Team University of Wisconsin-Madison 2001.
Electron Cyclotron Heating in the Helically Symmetric Experiment J.N. Talmadge, K.M. Likin, A. Abdou, A. Almagri, D.T. Anderson, F.S.B. Anderson, J. Canik,
18 th Int’l Stellarator/Heliotron Workshop, 29 Jan. – 3 Feb. 2012, Canberra – Murramarang Reserve, Australia Recent Results and New Directions of the HSX.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
= 2·10 18 m -3 T e (0) = 0.4 keV ECH and ECE on HSX Stellarator K.M.Likin, A.F.Almagri, D.T.Anderson, F.S.B.Anderson, C.Deng 1, C.W.Domier 2, R.W.Harvey.
56 th Annual Meeting of the Division of Plasma Physics. October 27-31, New Orleans, LA Using the single reservoir model [3], shown on right, to:
54 th APS-DPP Annual Meeting, October 29 - November 2, 2012, Providence, RI Study of ICRH and Ion Confinement in the HSX Stellarator K. M. Likin, S. Murakami.
C. Deng and D.L. Brower University of California, Los Angeles J. Canik, D.T. Anderson, F.S.B. Anderson and the HSX Group University of Wisconsin-Madison.
Profiles of density fluctuations in frequency range of (20-110)kHz Core density fluctuations Parallel flow measured by CHERS Core Density Fluctuations.
Soft X-Ray Tomography in HSX V. Sakaguchi, A.F. Almagri, D.T. Anderson, F.S.B. Anderson, K. Likin & the HSX Team The HSX Plasma Laboratory University of.
48th Annual Meeting of the Division of Plasma Physics, October 30 – November 3, 2006, Philadelphia, Pennsylvania Energetic-Electron-Driven Alfvénic Modes.
Measurements of Reynolds stress flow drive and radial electric fields in the edge of HSX Bob Wilcox HSX Plasma Laboratory University of Wisconsin, Madison.
Neoclassical Currents and Transport Studies in HSX at 1 T
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
A.Zanichelli, B.Garilli, M.Scodeggio, D.Rizzo
MULTIPOINT ND THOMSON SCATTERING ON HT-7
0.5 T and 1.0 T ECH Plasmas in HSX
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik1, D.L. Brower2, C. Deng2,
Magnetic fluctuation measurements in HSX and its impact on transport
Impurity Transport Research at the HSX Stellarator
S. P. Gerhardt, A. Abdou, A. F. Almagri, D. T. Anderson, F. S. B
Characteristics of Edge Turbulence in HSX
Overview of Recent Results from HSX
Status of Equatorial CXRS System Development
First Experiments Testing the Working Hypothesis in HSX:
Remote sensing in meteorology
Presentation transcript:

Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory, U. of Wisconsin, Madison 1. Abstract3. The HSX TS System Calibration At the HSX plasma laboratory, a 10 channel Thomson scattering system has been established and is now operational. The system has been absolutely calibrated for density measurement using Raman scattering with nitrogen gas. It is found that for the QHS configuration the electron temperature gradually decreases when we increase the density at a fixed ECRH power and that the whole temperature profile increases with the heating power at a fixed plasma density. The central temperature increases from about 500eV to 950eV while the launched heating power increases from 37KW to 150KW for the QHS configuration plasma with a density of 1.5  cm -3. At the present density and heating power, the difference between the QHS and Mirror mode is not pronounced. Detailed results will be presented at the conference. *Work supported by US DoE under grant DE-FG02-93ER54222 The image spot is less than 100 microns for all the ten channels. Transmission efficiency of the fiber bundle is around 60%. At plasma density of /cm 3, the collection lens collects ~20000 photons for each of the ten fibers, which then couple the photons to the ten polychromators through fiber bundles. 3.a Spectrum Dispersion Calibration 4. Experiment Results 4.b QHS Mode vs Mirror Mode 4.e ECH Off-axis Heating Ten-Channel HSX TS system for electron temperature and density measurement has been calibrated and is now operational for daily routine service. Peaked electron temperature and density profile has been observed for QHS mode. Temperature increases with ECH heating power at fixed density and decreases as density increase at fixed heating power. Off-axis ECH heating affects plasma profiles for both QHS and Mirror mode Signal in different spectral channels indicates the existence of the superthermal electrons. 2.The HSX Device and HSX TS System Major Radius 1.2 m Average Plasma Minor Radius 0.15 m Plasma Volume ~.44 m 3 Rotational Transform Axis1.05 Edge 1.12 Number of Coils/period 12 Magnetic Field Strength (max) 1.25 T Magnet Pulse Length (full field) 0.2 s Auxiliary Coils (total) 48 Heating source28GHz 200 kW HSX (the Helically Symmetric eXperiment) is a new concept in toroidal stellarators that is operational at the HSX Plasma Laboratory of the University of Wisconsin - Madison. It is the only device in the world that will have a magnetic field structure that has been termed Quasi-Helically Symmetric (QHS) 2.a HSX Parameters 2.b HSX TS System Introduction The Thomson scattering system installed on Helical Symmetry Experiment (HSX) is a polychromator-type system, which covers the complete plasma cross section, providing a 10-point plasma parameter profile measurement during a single plasma shot. The system consists of a commercial 1J-10nsYAG laser, 10 polychromators from GA, the specially designed collection optics, a CAMAC data acquisition unit, and a controlling computer. The spectral calibration determines the response of the detection system to a radiation source of constant spectral emissivity. The result of spectral calibration will be used to build a look-up-table for electron temperature measurement. 3.b Absolute Signal Calibration – Raman Scattering Calibration stable over time. This shows that the whole temperature profile increase with the heating power at the fixed density of 1.5  /cm 3. The central temperature increases from about 500eV to 950eV while the heating power increases form 37KW to 150KW. QHS mode, 50 kW ECRH heating power This result shows that the temperature gradually decreases when we increase the density at a fixed ECRH power. Ratio of signals in different spectral channels Electron Temperature (eV) Since the stray light contribution to the first wavelength channel makes the Rayleigh scattering troublesome, we use rotational Raman scattering for density calibration. Nitrogen gas is chosen For safety reason and the second spectral channel extending from 1050 to 1060 nm is used for the calibration, which cover the most Raman scattering power. The TS signal from spectral channel i, after allowance for channel sensitivity, will be For the Raman scattering, the scattered light corresponding to the rotational transition J>J-2 is given by in which Electron density is then given by Raman signal from channel i after allowance for channel sensitivity Principles of Raman Scattering Wavelength (nm) Spectral response function and TS scattering spectrum for different electron temperature. Raman Scattering Calibration Results Most Raman scattering power collected in second spectral channel Raman scattering signal changes linearly with gas pressure. The calibration factor is defined by the slope of the fitted line TS results compared with interferometer results 4.a Plasma Density Scan and ECH Power Scan for QHS Mode Electron temperature is a little higher in QHS mode than Mirror mode. Density profile is more peaked in QHS mode and flat in Mirror mode. TS measurement gives similar density profile compared with the inverted density profile from interferometer measurement. 4.c ECH Heating Power Modulation Energy confinement time from diamagnetic flux measurement: ~0.8 ms Electron temperature drops during ECH modulation of 1 ms. 4.d Superthermal Electron Tail Mirror mode * Electron temperature increases at heating location. * Density profile changes to a center-peaked shape compared with the flat shape of the normal central heating mirror mode. QHS mode * Electron temperature peaks at the heating location and decreases dramatically at center compared with central heating. * Shape of plasma density profile doesn’t change with off-axis heating. Channel 4 have unusual high signal level compared with channel 2 and 3. Fitting the Thomson Scattering signal with bi-Maxwellian electron distribution f total =(1-p) f(T b )+p f (T tail ), we can separate the superthermal electrons’ contribution to the scattering signal. Significant tail in center region at ECH central heating. Tail temperature around 5-8 KeV Increasing ECH heating power increases the tail fraction. Integrated stored energy compared with the diamagnetic flux measurement. 5. Summary Superthermal electron at different ECH heating power and location at QHS mode of 1.5  /cm 3. 70KW 40KW 40KW off-axis Spectral Response (a.u.) Ratio Spatial channel number