Monday, Feb. 13, 2012PHYS 1444-004, Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #8 Monday, Feb. 13, 2012 Dr. Jae Yu Chapter Chapter 23.

Slides:



Advertisements
Similar presentations
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Advertisements

1/29/07184 Lecture 121 PHY 184 Spring 2007 Lecture 12 Title: Capacitor calculations.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 25 Capacitance Key contents Capacitors Calculating capacitance
Wednesday, Sept. 28, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Wednesday, Sept. 28, 2005 Dr. Jaehoon Yu Quiz Results.
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
February 16, 2010 Potential Difference and Electric Potential.
Tuesday, Oct. 4, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #11 Tuesday, Oct. 4, 2011 Dr. Jaehoon Yu Capacitors in Series.
ELECTRICITY PHY1013S CAPACITANCE Gregor Leigh
Capacitance and Dielectrics AP Physics C. Commercial Capacitor Designs Section
Capacitance Definition Parallel Plate Capacitors Cylindrical Capacitor
Capacitance and Dielectrics
1/25/07184 Lecture 111 PHY 184 Spring 2007 Lecture 11 Title: Capacitors.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Electrical Energy and Capacitance
 Devices that can store electric charge are called capacitors.  Capacitors consist of 2 conducting plates separated by a small distance containing an.
EXERCISES Try roughly plotting the potential along the axis for some of the pairs Exercises on sheet similar to this.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
Tuesday, June 19, PHYS 1444 Dr. Andrew Brandt PHYS 1444 Lecture #5 Tuesday June 19, 2012 Dr. Andrew Brandt Short review Chapter 24 Capacitors and.
Lecture 8-1 High Electric Field at Sharp Tips Two conducting spheres are connected by a long conducting wire. The total charge on them is Q = Q 1 +Q 2.
Monday, Sept. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Monday, Sept. 26, 2005 Dr. Jaehoon Yu Capacitors Determination.
1 Electric Potential Reading: Chapter 21 Chapter 21.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage.
Wednesday, Feb. 15, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #9 Wednesday, Feb. 15, 2012 Dr. Jae Yu Capacitors.
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Electric Energy and Capacitance
-Capacitors and Capacitance AP Physics C Mrs. Coyle.
Wednesday, Feb. 1, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #5 Wednesday, Feb. 1, 2012 Dr. Jaehoon Yu Chapter 22.
Weds., Jan. 29, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #5 Wednesday January 29, 2014 Dr. Andrew Brandt CH 17 Electric Potential.
Tuesday, Sept. 13, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Tuesday, Sept. 13, 2011 Dr. Jaehoon Yu Chapter 22.
Thursday, Sept. 22, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #10 Thursday, Sept. 22, 2011 Dr. Jaehoon Yu Chapter 23.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Monday, Feb. 13, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #8 Monday, Feb. 13, 2006 Dr. Jaehoon Yu Capacitors and.
Wednesday, Sept. 21, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Wednesday, Sept. 21, 2005 Dr. Jaehoon Yu Electric.
1 PHYS 1444 Lecture #4 Chapter 23: Potential Shape of the Electric Potential V due to Charge Distributions Equi-potential Lines and Surfaces Electric Potential.
Monday Feb. 3, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #6 Monday February 3, 2014 Dr. Andrew Brandt CH 17 Capacitance Dielectrics.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Monday, Apr. 16, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #20 Monday, April 16, 2012 Dr. Jaehoon Yu Today’s homework.
Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #7 Wednesday, Feb. 8, 2006 Dr. Jaehoon Yu Equi-potential.
Monday, June 10, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #5 Monday, June 10, 2013 Dr. Jaehoon Yu Chapter 17 –Electric.
Tuesday, Sept. 20, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Tuesday, Sept. 20, 2011 Dr. Jaehoon Yu Chapter 23 Electric.
Weds. Feb. 28, 2007PHYS , Spring 2007 Dr. Andrew Brandt 1 PHYS 1444 – Section 004 Review #1 Wednesday Feb. 28, 2007 Dr. Andrew Brandt 1.Test Monday.
Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #7 Wednesday, Feb. 8, 2012 Dr. Alden Stradeling Chapter.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Wednesday, Sep. 20, PHYS Ian Howley PHYS 1444 – Section 003 Lecture #8 Thursday Sep. 20, 2012 Ian Howley Chapter 24 Capacitors and Capacitance.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Thursday, June 16, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Friday, June 16, 2016 Dr. Jaehoon Yu Chapter 23 Electric.
PHYS 1441 – Section 001 Lecture #9
PHYS 1441 – Section 001 Lecture #8
PHYS 1444 – Section 501 Lecture #8
Capacitance & Dielectrics
PHYS 1444 – Section 003 Lecture #9
Capacitance (Chapter 26)
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
PHYS 1442 – Section 001 Lecture #4
PHYS 1444 – Section 002 Lecture #10
PHYS 1444 – Section 002 Lecture #11
PHYS 1444 – Section 003 Lecture #8
PHYS 1444 – Section 002 Lecture #10
PHYS 1444 – Section 003 Lecture #7
PHYS 1444 – Section 002 Lecture #11
Exercises on sheet similar to this
PHYS 1441 – Section 002 Lecture #10
PHYS 1444 – Section 02 Lecture #7
Presentation transcript:

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #8 Monday, Feb. 13, 2012 Dr. Jae Yu Chapter Chapter 23 Electric Potential –E Determined from V –Electrostatic Potential Chapter 24 Capacitance etc.. –Capacitors –Determination of Capacitance –Capacitors in Series or Parallel Today’s homework is homework #5, due 10pm, Tuesday, Feb. 21!!

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 2 Announcements First term exam –5:30 – 6:50pm, Wednesday, Feb. 22 –SH103 –CH21.1 through what we learn on Monday, Feb. 20 plus appendices A and B Reading assignments –CH23.9 Colloquium this week –4pm Wednesday, SH101 –Dr. Haiying Huang, UTA MAE –Mark your calendar on triple credit colloquium on April 4. Dr. Youngkee Kim

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 4 E Determined from V Potential difference between two points under the electric field is So in the differential form, we can write –What are dV and El?El? dV is the infinitesimal potential difference between the two points separated by the distance dldl E l is the field component along the direction of dl.dl. Thus we can write the field component El El as The component of the electric field in any direction is equal to the negative rate of change of the electric potential as a function of distance in that direction.!! Physical Meaning?

The quantity dV/d l is called the gradient of V in a particular direction –If no direction is specified, the term gradient refers to the direction on which V changes most rapidly and this would be the direction of the field vector E at that point. –So if E and dl dl are parallel to each other, If E is written as a function x, y and z, then l refers to x, y and z is the “partial derivative” of V with respect to x, with y and z held constant In vector form, 5 E Determined from V is called the del or the gradient operator and is a vector operator.

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 6 Electrostatic Potential Energy Consider a case in which a point charge q is moved between points a and b where the electrostatic potential due to other charges in the system is Va Va and VbVb The change in electrostatic potential energy of q in the field by other charges is Now what is the electrostatic potential energy of a system of charges? –Let’s choose V=0 at r=∞ –If there are no other charges around, single point charge Q1 Q1 in isolation has no potential energy and is exerted on with no electric force

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 7 Electrostatic Potential Energy; Two charges If a second point charge Q2 Q2 is brought close to Q1 Q1 at the distance r 12, the potential due to Q1 Q1 at the position of Q2 Q2 is The potential energy of the two charges relative to V=0 at r= ∞ is –This is the work that needs to be done by an external force to bring Q2 Q2 from infinity to a distance r 12 from Q1.Q1. –It is also the negative of the work needed to separate them to infinity.

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 8 Electrostatic Potential Energy; Three Charges So what do we do for three charges? Work is needed to bring all three charges together –Work needed to bring Q1 Q1 to a certain location without the presence of any charge is 0. –Work needed to bring Q2 Q2 to a distance to Q1 Q1 is –Work need to bring Q3 Q3 to a distance to Q1 Q1 and Q2 Q2 is So the total electrostatic potential of a three charge system is –What about a four charge system or N charge system?

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 9 Electrostatic Potential Energy: electron Volt What is the unit of the electrostatic potential energy? –Joules Joules is a very large unit in atomic scale problems, dealing with electrons, atoms or molecules For convenience, a new unit, electron volt (eV), is defined –1 eV is defined as the energy acquired by a particle carrying the charge equal to that of an electron (q=e) when it moves across a potential difference of 1V. –How many Joules is 1 eV then? eV however is NOT a standard SI unit. You must convert the energy to Joules for computations. What is the speed of an electron with kinetic energy 5000eV?

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 10 Capacitors (or Condensers) What is a capacitor? –A device that can store electric charge –But does not let them flow through What does it consist of? –Usually consists of two conducting objects (plates or sheets) placed near each other without touching –Why can’t they touch each other? The charge will neutralize… Can you give some examples? –Camera flash, UPS, Surge protectors, binary circuits, memory, etc… How is a capacitor different than a battery? –Battery provides potential difference by storing energy (usually chemical energy) while the capacitor stores charges but very little energy.

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 11 Capacitors A simple capacitor consists of a pair of parallel plates of area A separated by a distance d.d. –A cylindrical capacitors are essentially parallel plates wrapped around as a cylinder. How would you draw symbols for a capacitor and a battery? –Capacitor -||- –Battery (+) -|i- (-) Circuit Diagram

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 12 What do you think will happen if a battery is connected ( or the voltage is applied) to a capacitor? –The capacitor gets charged quickly, one plate positive and the other negative in equal amount. Each battery terminal, the wires and the plates are conductors. What does this mean? –All conductors are at the same potential. And? –So the full battery voltage is applied across the capacitor plates. So for a given capacitor, the amount of charge stored on each capacitor plate is proportional to the potential difference V ba between the plates. How would you write this formula? –C is a proportionality constant, called capacitance of the device. –What is the unit? Capacitors C/VorFarad (F) C is the property of a capacitor so does not depend on Q or V. Normally use  F or pF.

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 13 Determination of Capacitance C can be determined analytically for capacitors w/ simple geometry and air in between. Let’s consider a parallel plate capacitor. –Plates have area A each and separated by d. d is smaller than the length, and so E is uniform. –E for parallel plates is E=  0,  is the surface charge density. E and V are related Since we take the integral from lower potential (a) to higher potential (b) along the field line, we obtain So from the formula: –What do you notice? C only depends on the area and the distance of the plates and the permittivity of the medium between them.

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 14 Example 24 – 1 Capacitor calculations: (a) Calculate the capacitance of a capacitor whose plates are 20cmx3.0cm and are separated by a 1.0mm air gap. (b) What is the charge on each plate if the capacitor is connected to a 12-V battery? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1F, given the same air gap. (a) Using the formula for a parallel plate capacitor, we obtain (b) From Q=CV, the charge on each plate is

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 15 Example 24 – 1 (C) Using the formula for the electric field in two parallel plates (d) Solving the capacitance formula for A, we obtain Or, sincewe can obtain Solve for A About 40% the area of Arlington (256km 2 ).

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 16 Example 24 – 3 Spherical capacitor: A spherical capacitor consists of two thin concentric spherical conducting shells, of radius ra ra and r b, as in the figure. The inner shell carries a uniformly distributed charge Q on its surface and the outer shell and equal but opposite charge –Q. Determine the capacitance of the two shells. Using Gauss’ law, the electric field outside a uniformly charged conducting sphere is So the potential difference between a and b is Thus capacitance is

Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 17 Capacitor Cont’d A single isolated conductor can be said to have a capacitance, C. C can still be defined as the ratio of the charge to absolute potential V on the conductor. –So Q=CV. The potential of a single conducting sphere of radius rb rb can be obtained as So its capacitance is where