Random Rough Surface Scattering PEC x y z consider the rough surface scattering problem depicted above note that TM to z is equivalent to the TE case (transverse.

Slides:



Advertisements
Similar presentations
Study of propagative and radiative behavior of printed dielectric structures using the finite difference time domain method (FDTD) Università “La Sapienza”,
Advertisements

Sources of the Magnetic Field
EMLAB 1 Solution of Maxwell’s eqs for simple cases.
Algebraic, transcendental (i.e., involving trigonometric and exponential functions), ordinary differential equations, or partial differential equations...
Lecture 6. Chapter 3 Microwave Network Analysis 3.1 Impedance and Equivalent Voltages and Currents 3.2 Impedance and Admittance Matrices 3.3 The Scattering.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
MEASURES OF POST-PROCESSING THE HUMAN BODY RESPONSE TO TRANSIENT FIELDS Dragan Poljak Department of Electronics, University of Split R.Boskovica bb,
Limitation of Pulse Basis/Delta Testing Discretization: TE-Wave EFIE difficulties lie in the behavior of fields produced by the pulse expansion functions.
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
Chapter 24 Gauss’s Law.
Basic Concepts and Definitions Vector and Function Space. A finite or an infinite dimensional linear vector/function space described with set of non-unique.
MCE 561 Computational Methods in Solid Mechanics
9. Radiation & Antennas Applied EM by Ulaby, Michielssen and Ravaioli.
EEL 3472 Electrostatics. 2Electrostatics Electrostatics An electrostatic field is produced by a static (or time-invariant) charge distribution. A field.
Chapter 4 TRANSIENT HEAT CONDUCTION
MAGNETOSTATIC FIELD (STEADY MAGNETIC)
Lecture 4: Boundary Value Problems
Modeling a Dipole Above Earth Saikat Bhadra Advisor : Dr. Xiao-Bang Xu Clemson SURE 2005.
Lecture 8 Periodic Structures Image Parameter Method
Chapter 4 Linear Wire Antennas ECE 5318/6352 Antenna Engineering
1 ECE 480 Wireless Systems Lecture 3 Propagation and Modulation of RF Waves.
1 EEE 498/598 Overview of Electrical Engineering Lecture 11: Electromagnetic Power Flow; Reflection And Transmission Of Normally and Obliquely Incident.
Analysis of Thin Wire Antennas Author: Rahul Gladwin. Advisor: Prof. J. Jin Department of Electrical and Computer Engineering, UIUC.
1 © Unitec New Zealand DE4401 AC PHASORS BASICS. AC Resistors 2 © Unitec New Zealand.
Lecture 5 Method of images Energy stored in an electric field Principle of virtual work 1.
Finite Element Method.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1.
1 ELEC 3105 Basic EM and Power Engineering Start Solutions to Poisson’s and/or Laplace’s.
Acoustic diffraction by an Oscillating strip. This problem is basically solved by a technique called Wiener Hopf technique.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 9 ECE 6340 Intermediate EM Waves 1.
1 Complex Images k’k’ k”k” k0k0 -k0-k0 branch cut   k 0 pole C1C1 C0C0 from the Sommerfeld identity, the complex exponentials must be a function.
So far, we have considered plane waves in an infinite homogeneous medium. A natural question would arise: what happens if a plane wave hits some object?
1 EEE 431 Computational Methods in Electrodynamics Lecture 17 By Dr. Rasime Uyguroglu
HEAT TRANSFER FINITE ELEMENT FORMULATION
SVD methods applied to wire antennae
Chapter 4 : Solution of Electrostatic ProblemsLecture 8-1 Static Electromagnetics, 2007 SpringProf. Chang-Wook Baek Chapter 4. Solution of Electrostatic.
Project Background My project goal was to accurately model a dipole in the presence of the lossy Earth. I used exact image theory developed previously.
Fast and Efficient RCS Computation over a Wide Frequency Band Using the Universal Characteristic Basis Functions (UCBFs) June 2007 Authors: Prof. Raj Mittra*
Fast BEM Algorithms for 3D Interconnect Capacitance and Resistance Extraction Wenjian Yu EDA Lab, Dept. Computer Science & Technology, Tsinghua University.
Application of Finite Element Methods to Photonic Crystal Modelling B.P. Hiett D. Beckett, S.J. Cox, J. Generowicz, M. Molinari, K.S. Thomas High Performance.
Spring 2015 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
ENE 428 Microwave Engineerin g Lecture 10 Signal Flow Graphs and Excitation of Waveguides 1.
Hanyang University Antennas & RF Devices Lab. ANTENNA THEORY ANALYSIS AND DESIGN Prof. Jaehoon Choi Dept. of Electronics and Computer Engineering
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Spring 2015 Notes 32 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
ELEC 3105 Basic EM and Power Engineering
EEE 431 Computational Methods in Electrodynamics
UPB / ETTI O.DROSU Electrical Engineering 2
ANTENNA THEORY by CONSTANTINE A. BALANIS ch. 4.1~4.4
Notes 22 ECE 6340 Intermediate EM Waves Fall 2016
Random Rough Surface Scattering
Chapter 11. The uniform plane wave
ELEC 3105 Basic EM and Power Engineering
Microwave Engineering by David M. Pozar Ch. 4.1 ~ 4 / 4.6
ELEC 401 MICROWAVE ELECTRONICS Lecture 3
ELEC 401 MICROWAVE ELECTRONICS Lecture 3
ENE/EIE 325 Electromagnetic Fields and Waves
topics Basic Transmission Line Equations
Finite Volume Method for Unsteady Flows
Supported by the National Science Foundation.
Microwave Engineering
Lattice (bounce) diagram
8-1 Introduction a) Plane Stress y
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 40.
Chapter 4. Time Response I may not have gone where I intended to go, but I think I have ended up where I needed to be. Pusan National University Intelligent.
The Method of Moments Lf = g where L is a linear operator
Chapter 3 Modeling in the Time Domain
Antenna Theory Chapter.4.7.4~4.8.1 Antennas
Presentation transcript:

Random Rough Surface Scattering PEC x y z consider the rough surface scattering problem depicted above note that TM to z is equivalent to the TE case (transverse to the direction of propagation)

Integral Equation PEC x y z on the PEC surface

Integral Equation where f = y(x’)

Tapered Incident Field the rough surface has a finite length, is truncated at x=±L/2 the incident field cannot be a uniform plane wave, otherwise, diffraction from the end points may be significant the incident field is chosen as a tapered wave that reads g is the tapering parameter

Long Surface is Required for Near Grazing Incidence near grazing incidence, the RHS would not be close to zero g and therefore L must be very large for near grazing incidence

TE-to-z or TM (to the Direction of Propagation) Note that we can use the MFIE for the thin shell problem since a tapered wave is used, as the other side of the surface has zero fields.

Difference between TE and TM Case the former one has a symmetric impedance matrix while that of the latter one is non-symmetric when the surface is large, the number of unknowns will be large and the matrix solution time will be long we have developed a banded matrix iterative approach to solve a large matrix for the one-dimensional rough surface (a two-dimensional scattering) problem

Spatial Domain Methods one disadvantage of the spectral domain is that it requires numerical integration of infinite extend spatial domain Green’s functions are not readily available for layered media with applications in microstrip antennas and high-frequency circuits methods have been developed to circumvent this difficulty we will discuss the complex image method in conjunction with the Rao-Wilton-Glisson triangular discretization the mixed-potential integral equation (MPIE)

Microstrip Structures r W h ground plane microstrip line dielectric layer has arbitrary surface conductor geometry ground plane and substrate extend to infinity in the transverse direction and the space above the dielectric is unbounded the substrate is homogeneous and isotropic, but not necessarily lossless the upper conductor and ground plane have zero resistivity, and the upper conductor is infinitely thin our goal is to compute the surface current distribution from which other parameters can be extracted

Mixed-Potential Integral Equation (MPIE) it has weaker singularities in its Green’s functions than the EFIE, rendering more quickly convergent solutions

Rao-Wilton-Glisson (RWG) Triangular Basis Functions T+T+ T-T- A+A+ A-A- V+V+ V-V- these functions overlap, and each plate can be part of up to three different basis functions O

Rao-Wilton-Glisson (RWG) Triangular Basis Functions in otherwise

Rao-Wilton-Glisson (RWG) Triangular Basis Functions the current flows from plate to, with maximum current across the common edge, zero current at the isolated vertices and, and no currents with components normal to the other four sides the weighting in the current representation is such that the current normal to the common edge is continuous across that edge, and hence, no fictitious charge singularities arise when the continuity equation is applied to the basis function, the charge density is a constant equal to and on each plate and the total charge is zero

Method of Moments

Simplications many identical integrations will be performed considerable computational effort is saved by evaluating and storing the scalar potential integral for all plate combinations and recalling these results as needed in evaluating the matrix elements the same cannot be said of the integral for the vector potential, whose integrand evaluated over a particular source triangle depends on the identity of the isolated vertex and, hence, the basis function to which the triangle is assigned

Simplications where is set alternately to x’, y’and 1 the basis function dependence is removed from the integrals and reintroduced in the evaluation of Z mn through a weighted sum of these three for each plate combination, a total of four scalar integrals are evaluated and later recalled in constructing the elements in impedance matrix Z the excitation vector is given by

Spectral-Domain Green’s Function no closed-form expressions for G a and G q in the spatial domain, but they can be represented in closed-form in the spectral domain Wave numbers k zo and k  are the vertical and radial components of the free-space propagation constant k o in the cylindrical system R TE and R TM are the reflection coefficients at the interface of TE and TM plane waves incident on the substrate with ground plane

Spatial Green’s Function through Transformation the spatial-domain Green’s functions can then be expressed as an inverse Hankel-transform of the spectral counterparts, commonly referred to as Sommerfeld integrals Approximate analytic expressions exist for the evaluation of the Hankel-transform for  in the near and far fields a technique developed by Prof. Fang Dagang of the Nanjing University of Science and Technology and improved by Prof. Y. L. Chow allows efficient evaluation in all regions

Complex Image Method the Sommerfeld integral is divided into three contributions: 1) quasi-dynamic images, 2) surface waves, and 3) complex images the first two contributions, which dominate respectively in the near-and far-field, are extracted from R TE and R TM and handled analytically using the Sommerfeld Identity what remains in R TE and R TM is relatively well behaved and exhibits exponential decay for sufficiently large values of k  the remainder can be accurately approximated with a short series of exponentials terms, which are interpreted as complex images

Complex Image Method the exponents of the expansion are computed using Prony’s method or the matrix pencil method and the term weights then obtained through a least-square fit the inverse Hankel-transform of the exponentials can be performed analytically, again using the Sommerfeld Identity two to four expansion terms are appropriate, depending on the frequency particular care should be taken in determining the number for expansion terms of G q since its contribution in the scalar potential is a second-order difference arising from the source pulse-doublet and the testing procedure

Efficient Implementation all elements in the impedance matrix can be computed from a linear combination of four scalar integrals evaluated for all source/test plate combinations the surface integration over the source plate can be replaced by evaluation of the integrand at the plate centroid

Efficient Implementation the difference between the distances from the three vertices of the source plate to the test plate centroid is under some set maximum level, say 20%, then that approximation is viable it makes sense to evaluate the Green’s functions with an interpolation table both G a and G q exhibit 1/  and log  singularities, so the table must begin at some minimum displacement   governed by the interpolation scheme, the dominant 1/  singularity, and a maximum error criterion, say 1%

Efficient Implementation the interactions can be catalogued by stepping through each plate combination far-interactions are ignored, as they are too numerous to store and can be rapidly evaluated through the G a and G q for near interactions, the four scalar integrals are evaluated and catalogued subsequent plate combinations are then checked against the stored interactions and computed only if no equivalent interactions is available Two plate interaction integrals are equivalent if the x- and y- displacements of the test plate centroid from the source plate vertices are identical

Expressions Needed

Sommerfeld Identity

Use of Sommerfeld Identity

Curve Fitting using Complex Exponentials it is unfortunate that brute force application of signal processing techniques would not yield satisfactory results in representing our functions

Quasi-Dynamic Contributions at very low frequency,, R TE and R q can be reduced to the quasi-dynamic form given by

Quasi-Dynamic Contributions surface-wave contribution dominates in the far field

Surface-Wave Contributions

Complete Expressions