CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.

Slides:



Advertisements
Similar presentations
Secondary Ion Mass Spectrometry
Advertisements

HKCEE Chemistry Volumetric Analysis &
Radomir PanekEU PWI Task Force Meeting - CEA Cadarache1 PWI work in Association-IPP.CR Presented by R. Panek Content: 1. Collisions of hydrocarbon ions.
Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
EU Plasma-Wall Interaction TF – Meeting Frascati SEWG Erosion & Transport S. Brezinsek Institut für Energieforschung –Plasmaphysik.
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
R. Doerner, Oct. 18, 2005 EU PWI TF meeting, France Beryllium and carbon mixed-material studies R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Annual High-Z /Metal PFC SEWG Meeting, Ljubljana 1-2 October 2009 Studies of Plasma-Wall Interactions Post mortem characterization of exposed tungsten.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
EU-PWI TF Task Force meeting, Cadarache Oct EU-PWI CONTRIBUTIONS FROM IFP F. Ghezzi Istituto di Fisica del Plasma, C.N.R., EUR/ENEA/CNR Ass.,
Experiments about carbon removal and codeposit inhibition J.A. Ferreira, F.L. Tabarés, W. Bohmeyer and A. Markin, I. Tanarro, V. Herrero.
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
EU Plasma-Wall Interaction TF – Meeting FZJ SEWG Chemical Erosion S. Brezinsek TEC 1 Report of the Special Expert Working Group on Chemical.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
Joint SEWGs-TFE meeting S. Brezinsek22/07/2008 TF E Impact of N 2 on carbon chemistry in JET S. Brezinsek, Y. Corre and TFE.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
EU PWI Task Force V. Philipps, SEWG mixed materials, JET ITER-like Wall Project : Material choice, issues to investigate and role of new SEWG ITER-like.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
V.Philipps, SEWG Gas balance and fuel removal, JET, , Association EURATOM – FZJ Effect of disruptions on fuel release from JET walls V. Philipps,
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
D retention and release behaviour of Be/C/W mixed materials
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Member of the Helmholtz Association Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ A. Litnovsky et al., Progress report on the.
Mixed materials in JET 2006 J P Coad Present JET situation Deposited films at the inner divertor (plasma-facing surfaces) Films deposited in shadowed areas.
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Recent Results from PISCES Program R. P. Doerner, M. J. Baldwin, G. De Temmerman, J. Hanna, D. Nishijima,
P. Coad, J. Likonen, H. Bergsåker, M. Rubel, I. Uytdenhouwen, A. Widdowson JET mixed Be/C/O layers SEWG meeting on mixed materials, , JET.
No 1 V. Philipps, SEWG Fuel retention, July 2010, Garching Joint TEXTOR, MAGNUM and PISCES experiments on retention in W and mixed W/C system V. Philipps,
Jozef Stefan Institute Plasma laboratory Ljubljana, Slovenia Chemical cleaning with neutral oxygen or nitrogen atoms Miran Mozetič Jozef Stefan Institute,
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
D retention in O-covered and pure beryllium
1 Vacuum Pumping Via Titanium- Zirconium-Vanadium Thin Films Yulin Li Laboratory for Elementary-Particles Physics, Cornell University, Ithaca, NY 14853,
Residual Stress Behavior of DLC Film in Humid Environment Young-Jin Lee a),b), Tae-Young Kim a), Kwang-Ryeol Lee a), In-Sang Yang b) a)Future Technology.
DLC DLC Se Jun Park, Kwang-Ryeol Lee, Seung-Cheol Lee, Future Technology Research Division, Korea Institute of Science and Technology.
Humidity Dependence of Tribological Behavior of DLC Film Se Jun Park *#, Kwang-Ryeol Lee *, Seung-Cheol Lee * and Dae-Hong Ko # * Korea Institute Science.
Addition 1’s to 20.
25 seconds left…...
Environmental Dependence on Tribological Behavior of Diamond-like Carbon Films with Nano-undulated Surface Jin Woo Yi a,b, Se Jun Park a, Kwang-Ryeol Lee.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Effects of active mode control on edge profiles and plasma-surface interactions in T2R H. Bergsåker with contributions from S. Menmuir, M. Henriksson et.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Tritium Retention in Graphite and Carbon Composites Sandia National Laboratories Rion Causey Sandia National Laboratories Livermore, CA
Laboratorio Nacional de Fusión 1/13 CLEANING EFFICIENCY OF CARBON FILMS BY OXYGEN PLASMAS IN THE PRESENCE OF METALLIC GETTERS Francisco L. Tabarés, J.A.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
PSI 2008 Toledo May 2008 © Matej Mayer Carbon balance and deuterium inventory from a carbon dominated to a full tungsten ASDEX Upgrade M. Mayer a, V. Rohde.
Photonic T removal techniques in the EU G Counsell 1, P Coad 1, C Grisolia 2, A. Semerok 3, A Widdowson 1 1 EURATOM/UKAEA Fusion Association, Culham Science.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Substrate Preparation Techniques Lecture 7 G.J. Mankey.
ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
IV. Results and Discussion Effect of Substrate Bias on Structure and Properties of W Incorporated Diamond-like Carbon Films Ai-Ying Wang 1, Kwang-Ryeol.
Mg Films Grown by Pulsed Laser Deposition as Photocathodes: QE and surface adsorbates L. Cultrera INFN – National Laboratories of Frascati.
DC Sputtering Disadvantage #1 Low secondary electron yield
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Surface Analysis of Graphite Limiter and W-coating Testing on HT-7
ITERに係わる原子分子過程 Atomic and Molecular Processes in ITER SHIMADA, Michiya ITER International Team Annual Meeting of Japan Society of Plasma Science and Nuclear.
Determining Composition through X-Ray Photoelectron Spectroscopy
Presentation transcript:

CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik

CIPS SEWG FR, JET 2008C. Hopf Experience at IPP ASDEX Upgrade (2005) He/O 2 DC glow discharge 5.4 A, ca. 600 V 2% O % He 6 x mbar 49 h total O 2 /He glow time AUG + laboratory experiments: (E)Efficiency of He/O 2 mixtures as function of the mixture ratio (A)Accessible locations (B)Effect of boron in carbon redeposits (C)Collateral damage: Physical sputtering of various materials and oxidation of tungsten

CIPS SEWG FR, JET 2008C. Hopf (E) Efficiency of He/O 2 mixtures

CIPS SEWG FR, JET 2008C. Hopf (E) Why He/O 2 mixtures? Use of He/O 2 mixtures rather than pure O 2 because of safety hazards (oil-sealed rotary pumps, dust). He has lower physical sputtering yields. pure O 2 DC glow discharges are hard to ignite/sustain. How does the erosion rate depend on the mixture ratio?

CIPS SEWG FR, JET 2008C. Hopf (E) Mass spectrometry during discharge in AUG I = 5.4 AO 2 /(O 2 +He) = 0.6 % erosion limited by ion flux density, not O 2 supply

CIPS SEWG FR, JET 2008C. Hopf (E) Dependence of rate on O 2 /(He + O 2 ) ratio Rate saturation already at 10 % O 2 ECR He/O 2 discharge Substrate bias: V Power constant: 150 W Total pressure constant: 0.5 Pa O 2 /He ratio changed

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism Particle beam experiment: Ar + (20 to 800 eV) plus thermal O 2 (background gas) C. Hopf,a M. Schlüter, and W. Jacob, Appl. Phys. Lett. 90 (2007) C. Hopf, M. Schlüter, T. Schwarz-Selinger, and W. Jacob, New. J. Phys., submitted

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism Ar + + O 2 : O 2 flux dependence

CIPS SEWG FR, JET 2008C. Hopf (E) Rate Saturation Saturation at Ion energy j ion (cm -2 s - 1 ) p (Pa)j O2 (cm -2 s -1 )% O 2 AUG300 eV < < 0.5 ECR400 eV The required oxygen flux density scales roughly like the ion (energ y) flux density.

CIPS SEWG FR, JET 2008C. Hopf (A) Accessible Locations

CIPS SEWG FR, JET 2008C. Hopf (A) a-C:H samples in AUG sectors 6, 7, 8 sectors 3, 11, 15 C removed No C removed Glow discharge accesses large surface area does not access shielded places, such as tile gaps, behind first wall, and deep in the divertor See T. Schwarz- Selinger, tile gap experients

CIPS SEWG FR, JET 2008C. Hopf (B) Effect of Boron in Redeposited Layers

CIPS SEWG FR, JET 2008C. Hopf (B) Real layers a-C:HTokamak redeposits Laboratory glow discharge: Layer removed AUG: No signs of erosion Ion beam analysis of 2005 layers: Dominated by boron B/C >> 1

CIPS SEWG FR, JET 2008C. Hopf (B) Effect of boron on a-C:H erosion a-B:C:H films (varying B content) ECR oxygen discharge RF substrate bias -60 eV

CIPS SEWG FR, JET 2008C. Hopf (B) Effect of boron on a-C:H erosion a-B:C:H films (varying B content) ECR oxygen discharge RF substrate bias -60 eV Erosion rate drops by factor of % B factor 10 reduction

CIPS SEWG FR, JET 2008C. Hopf (B) Effect of boron on a-C:H erosion a-B:C:H films (varying B content) ECR oxygen discharge RF substrate bias -60 eV Erosion rate drops by factor of % B factor 10 reduction

CIPS SEWG FR, JET 2008C. Hopf (B) Effect of boron on a-C:H erosion a-B:C:H films (varying B content) ECR oxygen discharge RF substrate bias -60 V Boron erosion rate constant: Enrichment of boron at surface B eroded by physical sputtering Carbon eroded according to stoichiometry Erosion rate drops by factor of % B factor 10 reduction

CIPS SEWG FR, JET 2008C. Hopf (B) Arcing during DC glow discharge Layers conductivity decreased during venting prior to AUG GDC cleaning. Surface charged positively. Local arcs burnt holes through layer, tungsten, and graphite. No energetic ion bombardment on major parts of the films. Main reason for finding no erosion of the layers.

CIPS SEWG FR, JET 2008C. Hopf (B) Conclusion: High B concentrations in AUG layers would have significantly reduced their erosion rates but as they had become insulating they experienced no energetic ion flux and were not eroded at all.

CIPS SEWG FR, JET 2008C. Hopf (C) Collateral Damage

CIPS SEWG FR, JET 2008C. Hopf (C) Sputtering of C, Al, Fe, and W by He + and O + Reactivity of oxygen can increase (carbon) or decrease (Al, W) the sputtering yield.

CIPS SEWG FR, JET 2008C. Hopf (C) Collateral damage: Selectivity Erosion yields for 300 eV ion bombardment: to be compared to a yield of 1 C/ion for a-C:H or 0.1 C/ion for B-impurified films Selectivity: Keep ion energy low!

CIPS SEWG FR, JET 2008C. Hopf (C) Redeposition of sputtered metals O 2 /He DC GDC in stainless steel vessel: Analysis (chemical, XRF, XPS): Fe, Cr, Ni, O redeposited and oxidized SS

CIPS SEWG FR, JET 2008C. Hopf (C) Collateral damage II: Oxidation of W Oxidation of W saturates Rapid oxygen removal in H discharge

CIPS SEWG FR, JET 2008C. Hopf Summary Accessible locations: Critical issue: gaps O 2 /He mixtures: Required oxygen concentrations depend on ion energy flux density (understood by modelling) Typically 1–10% O 2 required Effect of impurities: Boron: Huge reduction of erosion rate even at low concentrations Other impurities that do not form volatile oxides: Experiments under well defined laboratory conditions needed Collateral damage: Selectivity: Keep ion energy low (problem for DC discharges) Oxidation: rapidly reversible, no problems reported after tokamak experiments

CIPS SEWG FR, JET 2008C. Hopf

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism Particle beam experiment: Ar+ (20 to 800 eV) plus thermal O 2 (background gas) C. Hopf,a M. Schlüter, and W. Jacob, Appl. Phys. Lett. 90 (2007) C. Hopf, M. Schlüter, T. Schwarz-Selinger, and W. Jacob, New. J. Phys., submitted

CIPS SEWG FR, JET 2008C. Hopf (3) a-C:H erosion samples: toroidal scan No a-C:H erosion where arcing occurred C removed No C removed

CIPS SEWG FR, JET 2008C. Hopf a-C:H erosion samples: toroidal scan Anodes: Roof Baffle Outer Divertor Film thickness left of initial 350 nm No a-C:H erosion where arcing occurred

CIPS SEWG FR, JET 2008C. Hopf (B) Composition of AUG layers in 2005 Layers on all investigated tiles are boron and oxygen dominated No significant erosion No significant reduction of C or D concentration minimum and maximum concentrations on tiles

CIPS SEWG FR, JET 2008C. Hopf (E) Ion + O 2 synergism Ar + + O 2 : O 2 flux dependence

CIPS SEWG FR, JET 2008C. Hopf Where do the removed 25 g C come from? Eroded carbon: 25 g = 1.2 x C atoms Ions:50 h x 5.4 A = 6 x Ions Yield:0.2 (in lab experiment: 0.1) Arc pits:40 holes / cm 2 1 mm x 0.1 mm x 7 µm assumption: 20 m 2 affected 8 g C eroded Not W-covered surface:34 % Carbon dust Not analyzed tiles with C-rich layers