A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,

Slides:



Advertisements
Similar presentations
J. Roth, EU PWI TF, SEWG Fuel Retention, Cadarache, June 15, 09 Tritium inventory: Joint international scaling for ITER WP09-PWI-01-01/IPP/PS Status by.
Advertisements

G. Arnoux (1/19) SEWG on transient heat loads Ljubljana, 02/10/2009 Heat load measurements on JET first wall during disruptions G. Arnoux, M. Lehnen, A.
Institute for Plasma Physics Rijnhuizen Heat load asymmetries in MAST G. De Temmerman a,b, A. Kirk a, E, Nardon a, P. Tamain a, A. Thornton a a Present.
Member of the Helmholtz Association Fuel retention in carbon materials Arkadi Kreter et al.
EU-PWI Taskforce EU PWI TF Meeting Nov. 4 – 6, 2009, Warsaw Summary of the PSI facility review meeting presented by R. Neu based on the Summary of the.
Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
EU Plasma-Wall Interaction TF – Meeting Frascati SEWG Erosion & Transport S. Brezinsek Institut für Energieforschung –Plasmaphysik.
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
R. Doerner, Oct. 18, 2005 EU PWI TF meeting, France Beryllium and carbon mixed-material studies R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Joachim Roth: SEWG Gas balance, JET, July, 2008 Recent analysis of Tritium retention in ITER Report from the joint EU-US meeting at MIT combining the ITPA.
Th Loarer - SEWG on Fuel retention – JET, July Th Loarer with special thanks to S Brezinsek, J Bucalossi, I Coffey, G Esser, S Gruenhagen.
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
R. Doerner, EU PWI Task Force Meeting, Frascati, Italy, Oct , 2008 US-EU Collaboration on Mixed Materials for ITER: Past, Present and Future R. P.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
1TPL Dismantling Project Review 08/12/06 Bernard Pégourié TORE SUPRA Association EURATOM-CEA D program: Specific experiments before dismantling Purpose:
EU PWI Task Force V. Philipps, SEWG mixed materials, JET ITER-like Wall Project : Material choice, issues to investigate and role of new SEWG ITER-like.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
D retention and release behaviour of Be/C/W mixed materials
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
1E. Tsitrone PWI TF meeting, 27-29/10/2008, Frascati Euratom International context : ITPA (International Tokamak Physics Activity) Changes in the ITPA.
J. Roth, EU PWI TF, SEWG Fuel Retention, Garching, July 19, 2010 Report on: WP10-PWI /IPP/PS Multi machine scaling of fuel retention for ITER Validation.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
J. Roth Bilateral Agreements EU-DOE: e.g.: PISCES operation (following talk by Russ Doerner) Bilateral Agreement EU-Russia: collaboration on Material damage.
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
No 1 V. Philipps, SEWG Fuel retention, July 2010, Garching Joint TEXTOR, MAGNUM and PISCES experiments on retention in W and mixed W/C system V. Philipps,
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.
1 PWI - related work at VR Marek Rubel (VR) Projects within ILW : Beryllium coatings for inner wall cladding (with MEC, UKAEA, FZJ, UCSD, TEKES) Development.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Conversion Problems 3.3.
Reducing Fractions. Factor A number that is multiplied by another number to find a product. Factors of 24 are (1,2, 3, 4, 6, 8, 12, 24).
Chapter 5 Test Review Sections 5-1 through 5-4.
25 seconds left…...
Mo-i-Rana - September 2002 Dam-break floods and sediment movement 1 IMPACT - WP4 Dam-break induced floods and sediment movement IMPACT - WP4 Dam-break.
We will resume in: 25 Minutes.
PSSA Preparation.
& dding ubtracting ractions.
© Olga Ogorodnikova, 2008, Salamanka, Spain Current status of assessment of Tritium inventory in all-W device O.V. Ogorodnikova and E. d’Agata.
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
R. Doerner, IAEA CRP on H in Materials, Vienna, Sept. 26, 2006 Mixed-material studies in PISCES-B R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
1 Greenwald FESAC, Aug. 07 Whyte First Wall Issues: ITER to DEMO D.G. Whyte, B. Lipschultz Plasma Science & Fusion Center, MIT, Cambridge USA Greenwald.
W coating of CFC tiles for the JET new wall - Task Agreement: JW6-TA-EP2-ILC-05 Manufacturing and testing of W-coated CFC tiles for installation in JET.
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, R. P. Doerner, G. De Temmerman, M.J. Baldwin, D. Nishijima Center for Energy Research, University.
9th Hydrogen Workshop, Salamanca, June Tritium retention buildup towards pulses in ITER PFCs and dust W.M. SHU, S. Ciattaglia and M. Glugla ITER.
ITPA - Meeting, Toronto; Session 3 - High Z studies 3 - High-Z studies (Chair - A. Herrmann) 16:25 (0:10) A. Herrmann - Introduction 16:35.
PSI 2008 Toledo May 2008 © Matej Mayer Carbon balance and deuterium inventory from a carbon dominated to a full tungsten ASDEX Upgrade M. Mayer a, V. Rohde.
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
R. Doerner, PFC Program Meeting, MIT, July 8-10, 2009 Mixed Interactions of W, Be, C, D & He R. Doerner for the PISCES Team In collaboration with members.
ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION FDF: PWI issues and research opportunities Peter Stangeby University of Toronto.
J. Roth: ITPA SOL/DIV, Avila, Jan Prediction of ITER T retention levels with W PFCs J. Roth, and the SEWG Fuel retention of the EU Task Force on.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Presentation transcript:

A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a, A. Kirschner e, R. Kolasinski f, B. Lipschultz b, A. Loarte g, O. Ogorodnikova a, V. Philipps e, K. Schmid a, W. Wampler h, G. Wright i, D. Whyte b, a IPP Garching, EURATOM Association, Germany, b MIT PSFC, Cambridge, MA USA, c UTIAS, Toronto, Canada d Fusion Energy Research Program, UCSD, La Jolla, CA , USA, e Institut für Energieforschung 4, FZ Jülich, EURATOM Association, Germany, f Sandia Laboratories, Livermore, CA, USA, g ITER Cadarache, France, h Sandia Laboratories, Albuquerque, NM, USA, i FOM, Rijnhuizen, The Netherlands

Wall and divertor fluxes from B2/EIRENE (Kukushkin) Wall flux multiplied by 4±3 Wall erosion/deposition from DIVIMP Divertor erosion/deposition using ERO Co-depostion from exp. data Retention in W from exp. data extrapolated by diffusion codes Plasma Phys. Control. Fusion 50 (2008) Previous approach

Assess status of laboratory and tokamak data pertaining to hydrogenic retention and underlying processes Particle fluxes to PFCs: Main chamber: Assumed fluxes and surface temperatures for empirical estimates (here example for high flux case) Two cases considered: total wall flux 1x10 24 /s (max. machine scaling) total wall flux 1x10 23 /s (B2/EIRENE Kukushkin) Divertor: Fluxes obtained from B2_EIRENE calculation (equilibrium 1084) total divertor flux 3x10 24 /s Assess status of laboratory and tokamak data pertaining to hydrogenic retention and underlying processes Present approach

Erosion Yields: for wall simplified assumption Y C = Y Be = 0.02 for divertor: full energy, temperature and flux dependence Co-deposition ratio: D/C, D/Be, D/W Dependent on temperature, energy, flux ratio: Carbon: (D+T)/C = (2.0 ·10 -2 ) E ( (D+T) / C ) 0 e (2268/T) Beryllium: (D+T)/Be = (5.82 · ) E 1.17 ( (D+T) / Be ) e (2273 /T) Tungsten (D+T)/W = (5.13 · ) E 1.85 ( (D+T) / W ) 0.4 e (736 /T)

D retention in tungsten: Upper margin: D/m 2 = 1.5 · ( 0.55 /(1 · )) Lower margin: D/m 2 = 8 · ( 0.66 /(1 · )) Temperature dependence: D/m 2 = · e (-T/185) No effects of simultaneous D and He implantation included. Present approach

Projections Explore what the various empirical and numerical models predict for retention in ITER Vessel Walls: Assumptions from tokamak experience: High flux 1x10 24 /s: 50% dep. in main chamber 37.5% dep. in inner divertor 15.5% dep. in outer divertor Low flux (0.1 of high flux): 75% dep. in inner divertor 25% dep. in outer divertor Divertor dep. prop. to plasma flux No divertor erosion, no re-erosion

Projections CFC divertor / Be walls: ERO code with divertor erosion, re-erosion and co-deposition Assumptions: 1% Be in incident flux inner divertor 0.1% Be in incident flux outer divertor 30 g at 10 5 s All-W device: Implantation and retention (without effects of n-damage) - Break-down of retention in W for different areas - Large wall areas most important

Summary Material comparison: no absolute prediction for ITER not including n-damage effects This work is an identification of areas needing additional research, rather than a material selection recommen- dation. Use of this work to select or de-select a material is probably not wise. Issues such as lifetime, dust and plasma contamination should be included. all-C materials initial ITER mix Be wall + W divertor all-W materials C vessel wall Be vessel wall all-W materials 150W/mK 50W/mK high wall flux low wall flux Be wall with CFC divertor

Future work Estimate of the effect of neutron induced damage for trap creation and subsequent T retention Current assessment: Retention by ion beams within m range with the best match to ITER conditions being the ones from Wright and Wampler - Traps for hydrogen appear may reach 0.6% of the W concentration, 15 times the natural trap density - In a W wall, in saturation, 3·10 27 traps available (equivalent to 15 kg of tritium if all filled) - Modelling of trap creation and subsequent filling beyond mm range not yet available Estimate effect of transient heating of surfaces on trapping in all materials Improve treatment of material transport, including re-erosion from divertor plates and main chamber local re-deposition Include effect of material mixing

Underestimation in new evaluation Due to: - neglecting outer divertor erosion - divertor transport and deposition on cooler surfaces Need for coupling of wall erosion (DIVIMP) with divertor erosion and transport (ERO/TRIDYN) Overestimation of retention in previous evaluation due to - neglection of saturation - very conservative treatments of n-damage effects Overall satisfactory agreement, new data more optimistic due to higher temperatures and neglect of outer divertor erosion Comparison of evaluation methods