Capacitance.

Slides:



Advertisements
Similar presentations
Capacitance and Dielectrics
Advertisements

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Capacitance and Dielectrics
Chapter 24 Capacitance, dielectrics and electric energy storage
Chapter 17 Electric Potential.
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Chapter 23 Capacitance.
An equipotential surface is a surface on which the electric potential is the same everywhere. Since the potential at a distance r from an isolated point.
Charges Force (field) Potential (energy) What for? positive (+)
Lecture 8 Capacitance and capacitors
Application – Xerographic Copiers
17-7 Capacitance A device that stores electric charge Two plates that are separated by an insulator Used in electronic circuits Store charge that can later.
Chapter 26:Capacitance and Dielectrics. Capacitors A capacitor is made up of 2 conductors carrying charges of equal magnitude and opposite sign. The Capacitance.
Capacitance and Dielectrics
Bright Storm on Capacitors (Start to minute 7:10).
Capacitance and Dielectrics
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
Sinai University Faculty of Engineering Science Department of Basic Science 4/16/2017 W5.
Copyright © 2009 Pearson Education, Inc. Lecture 5 - Capacitance Capacitors & Dielectrics.
Ch 26 – Capacitance and Dielectrics The capacitor is the first major circuit component we’ll study…
Dr. Jie ZouPHY Chapter 26 Capacitance and Dielectrics.
Capacitance and Dielectrics
Electrical Energy and Capacitance
Capacitance and Dielectrics
Capacitance & Dielectrics
FCI1 CHAPTER OUTLINE 1. Definition of Capacitance 2. Calculating Capacitance 3. Combinations of Capacitors 4. Energy Stored in a Charged Capacitor.
Capacitance.
Chapter 16 Electric Energy and Capacitance. summary Capacitance Parallel plates, coaxial cables, Earth Series and parallel combinations Energy in a capacitor.
Capacitance�and�Dielectrics
Capacitance and Dielectrics
Electrical Energy and Capacitance
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
Capacitance, Capacitors and Circuits. Start with a review The capacitance C is defined as To calculate the capacitance, one starts by introduce Q to the.
-Combinations of Capacitors -Energy Stored in a Charged Capacitor AP Physics C Mrs. Coyle.
1 Electric Potential Reading: Chapter 21 Chapter 21.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Electric Energy and Capacitance
-Capacitors and Capacitance AP Physics C Mrs. Coyle.
Charges positive (+) negative (-) conservation Force (field) Potential (energy) Force between point charges Force on charge in the field Connect field.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
Capacitance PHY 2049 Chapter 25 Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
Capacitance and Dielectrics
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Chapter 25 Capacitance.
Chapter 16 Electrical Energy AndCapacitance. General Physics Review - Electric Potential for a system of point charges.
Capacitance Physics Montwood High School R. Casao.
Chapter 25 Lecture 20: Capacitor and Capacitance.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Chapter 16 Electric Energy and Capacitance. Quiz A 9.0-V battery is connected between two parallel metal plates 4.0 mm apart. What is the magnitude of.
Electric Potential: Charged Conductor
Capacitor Engr. Faheemullah Shaikh Lecturer, Department of Electrical Engineering.
Capacitors and batteries Firdiana Sanjaya( ) Ana Alina( )
Physics 2102 Jonathan Dowling Physics 2102 Lecture 8 Capacitors II.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
Electrical Energy and Capacitance Capacitance. Capacitors and Charge Storage Capacitor – acts as a storehouse of charge and energy –Typically consists.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Capacitance and Dielectrics
Electric Energy and Capacitance
Capacitance & Dielectrics
Capacitance and Dielectrics
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The.
Capacitance and Dielectrics
Introduction to Capacitance
Capacitance and Dielectrics
Electric Potential: Charged Conductor
Chapter 18: Electrical Potential Energy
Capacitance and Dielectrics
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The capacitance.
Presentation transcript:

Capacitance

Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate sparking in automobile ignition systems energy-storing devices in electronic flashes

Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors The SI unit of capacitance is the farad (F)

Makeup of a Capacitor A capacitor consists of two conductors These conductors are called plates When the conductor is charged, the plates carry charges of equal magnitude and opposite directions A potential difference exists between the plates due to the charge

More About Capacitance Capacitance will always be a positive quantity The capacitance of a given capacitor is constant The capacitance is a measure of the capacitor’s ability to store charge The farad is a large unit, typically you will see microfarads (mF) and picofarads (pF)

Parallel Plate Capacitor Each plate is connected to a terminal of the battery The battery is a source of potential difference If the capacitor is initially uncharged, the battery establishes an electric field in the connecting wires

Capacitance – Parallel Plates The charge density on the plates is σ = Q/A A is the area of each plate, which are equal Q is the charge on each plate, equal with opposite signs The electric field is uniform between the plates and zero elsewhere

Capacitance – Parallel Plates, cont. The capacitance is proportional to the area of its plates and inversely proportional to the distance between the plates

Capacitance of a Cylindrical Capacitor DV = -2keλ ln (b/a) l = Q/l The capacitance is

Capacitance of a Spherical Capacitor The potential difference will be The capacitance will be

Circuit Symbols A circuit diagram is a simplified representation of an actual circuit Circuit symbols are used to represent the various elements Lines are used to represent wires The battery’s positive terminal is indicated by the longer line

Capacitors in Parallel When capacitors are first connected in the circuit, electrons are transferred from the left plates through the battery to the right plate, leaving the left plate positively charged and the right plate negatively charged

Capacitors in Parallel, 2 The capacitors can be replaced with one capacitor with a capacitance of Ceq The equivalent capacitor must have exactly the same external effect on the circuit as the original capacitors Ceq = C1 + C2 + C3 + …

Capacitors in Series When a battery is connected to the circuit, electrons are transferred from the left plate of C1 to the right plate of C2 through the battery

Capacitors in Series, 3 An equivalent capacitor can be found that performs the same function as the series combination The charges are all the same Q1 = Q2 = Q

Capacitors in Series, final The potential differences add up to the battery voltage ΔVtot = DV1 + DV2 + … The equivalent capacitance is The equivalent capacitance of a series combination is always less than any individual capacitor in the combination

Equivalent Capacitance, Example The 1.0-mF and 3.0-mF capacitors are in parallel as are the 6.0-mF and 2.0-mF capacitors These parallel combinations are in series with the capacitors next to them The series combinations are in parallel and the final equivalent capacitance can be found

Energy Stored in a Capacitor Assume the capacitor is being charged and, at some point, has a charge q on it The work needed to transfer a charge from one plate to the other is The total work required is

Energy, cont The work done in charging the capacitor appears as electric potential energy U: This applies to a capacitor of any geometry The energy stored increases as the charge increases and as the potential difference increases In practice, there is a maximum voltage before discharge occurs between the plates

Energy, final The energy can be considered to be stored in the electric field For a parallel-plate capacitor, the energy can be expressed in terms of the field as U = ½ (εoAd)E2 It can also be expressed in terms of the energy density (energy per unit volume) uE = ½ eoE2

Capacitors with Dielectrics A dielectric is a nonconducting material that, when placed between the plates of a capacitor, increases the capacitance Dielectrics include rubber, glass, and waxed paper With a dielectric, the capacitance becomes C = κCo The capacitance increases by the factor κ when the dielectric completely fills the region between the plates κ is the dielectric constant of the material

Dielectrics, cont For a parallel-plate capacitor, C = κεo(A/d) In theory, d could be made very small to create a very large capacitance In practice, there is a limit to d d is limited by the electric discharge that could occur though the dielectric medium separating the plates For a given d, the maximum voltage that can be applied to a capacitor without causing a discharge depends on the dielectric strength of the material