Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)

Slides:



Advertisements
Similar presentations
Products from the OMPS Limb Profiler (LP) instrument on the Suomi NPP Satellite Pawan K. Bhartia Earth Sciences Division- Atmospheres NASA Goddard Space.
Advertisements

Upgrades to the MODIS near-IR Water Vapor Algorithm and Cirrus Reflectance Algorithm For Collection 6 Bo-Cai Gao & Rong-Rong Li Remote Sensing Division,
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
1 A Temporally Consistent NO 2 data record for Ocean Color Work Wayne Robinson, Ziauddin Ahmad, Charles McClain, Ocean Biology Processing Group (OBPG)
Presentation on OMPS Nadir Mapper Wavelength Shift Adjustment for Earth-view Measurements.
Quantifying uncertainties of OMI NO 2 data Implications for air quality applications Bryan Duncan, Yasuko Yoshida, Lok Lamsal, NASA OMI Retrieval Team.
Results from the OMPS Nadir Instruments on Suomi NPP Satellite
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
1 Ozone Profile Retrieval from SBUV/2 Sweep Mode Data---Preliminary Results Xiong Liu, Kelly Chance Harvard-Smithsonian Center for Astrophysics Matthew.
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Surface nitrogen dioxide concentrations inferred from Ozone Monitoring Instrument (OMI) rd GEOS-Chem USERS ` MEETING, Harvard University.
Assimilation of EOS-Aura Data in GEOS-5: Evaluation of ozone in the Upper Troposphere - Lower Stratosphere K. Wargan, S. Pawson, M. Olsen, J. Witte, A.
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Intercomparison methods for satellite sensors: application to tropospheric ozone and CO measurements from Aura Daniel J. Jacob, Lin Zhang, Monika Kopacz.
Occurrence of TOMS V7 Level-2 Ozone Anomalies over Cloudy Areas Xiong Liu, 1 Mike Newchurch, 1,2 and Jae Kim 1,3 1. Department of Atmospheric Science,
Surface Reflectivity from OMI: Effects of snow on OMI NO 2 retrievals Gray O’Byrne 1, Randall Martin 1,2, Joanna Joiner 3, Edward A. Celarier 3 1 Dalhousie.
Heidy Plata 1, Ezinne Achinivu 1, Szu-Ting Chou 1, Sheryl Ehrman 1, Dale Allen 2, Kenneth Pickering 2♦, Thomas Pierce 3, James Gleason 3 1 Department of.
OMI total-ozone anomaly and its impact on tropospheric ozone retrieval Jae Kim 1, Somyoung Kim 1, K. J. Ha 1, and Mike Newchurch Department of Atmospheric.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)
S5P tropospheric ozone product: Convective Cloud Differential method First German S5P Verification Meeting Bremen, November 2013 Pieter Valks DLR,
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
Indian Power-plant NO x Emissions from OMI and Inventories David Streets and Zifeng Lu Argonne National Laboratory Argonne, IL AQAST-3 Meeting University.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
1 Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument Lok Lamsal and Randall Martin with contributions.
Objective Data  The outlined square marks the area of the study arranged in most cases in a coarse 24X24 grid.  Data from the NASA Langley Research Center.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
NASA/GSFC Tropospheric Ozone Residual M. Schoeberl NASA/GSFC M. Schoeberl NASA/GSFC.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Tropospheric Emission Spectrometer Studying.
A Long Term Data Record of the Ozone Vertical Distribution IN43B-1150 by Richard McPeters 1, Stacey Frith 2, and Val Soika 3 1) NASA GSFC
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Tropospheric Ozone Residual from OMI and MLS J. R. Ziemke, S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Levelt, and J. Waters (J. Geophys.
Comparisons of LER/MLER Cloud Pressures with a Model of Mie Scattering Plane-Parallel Cloud Alexander Vasilkov 1, Joanna Joiner 2, Pawan K. Bhartia 2,
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Validation of OMPS-LP Radiances P. K. Bhartia, Leslie Moy, Zhong Chen, Steve Taylor NASA Goddard Space Flight Center Greenbelt, Maryland, USA.
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
March 21, ‘06 comp. May 5, ‘06 comp Summary ~4% swath angle dependent difference Up to 9% difference over clouds Differences correlate with snow/ice.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
Interannual Variability of Solar Reflectance From Data and Model Z. Jin, C. Lukachin, B. Wielicki, and D. Young SSAI, Inc. / NASA Langley research Center.
Impact of OMI data on assimilated ozone Kris Wargan, I. Stajner, M. Sienkiewicz, S. Pawson, L. Froidevaux, N. Livesey, and P. K. Bhartia   Data and approach.
1 SBUV/2 Calibration Lessons Over 30 Years: Liang-Kang Huang, Matthew DeLand, Steve Taylor Science Systems and Applications, Inc. (SSAI) / NASA.
1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting,
Vegetation and O2-O2 cloud research products for TEMPO Joanna Joiner, contributions from Eun-Su Yang, Sasha Vasilkov, Yasuko Yoshida, Nick Krotkov, Dave.
Deriving the Instrument Transfer Function from OMI Solar Observations and Its Implications for Ozone Retrievals Kang Sun, Xiong Liu, Zhaonan Cai, Guanyu.
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
Quantifying uncertainties of OMI NO2 data
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
Estimating Ground-level NO2 Concentrations from OMI Observations
Continental outflow of ozone pollution as determined by ozone-CO correlations from the TES satellite instrument Lin Zhang Daniel.
6th TEMPO Science Team Meeting
Pawan K. Bhartia NASA Goddard Space Flight Center
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
2019 TEMPO Science Team Meeting
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)

TEMPO Clouds: cloud optical centroid pressure and effective cloud fraction Default baseline algorithm: OMI rotational-Raman algorithm (CLDRR) – Fitting window currently nm – Mixed-Lambertian cloud model – Validated with CloudSat, O2-O2 intercomparisons – shown to improve O 3 and SO 2 retrievals – Requires lookup table to be generated using a solar irradiance spectrum – Soft calibration improves retrievals (striping) for OMI/OMPS, use data over Antarctica (will not have this luxury for TEMPO!) – Sensitive to spectral errors (e.g., OMPS solar diffusor features and undersampling are issues; for OMI straylight an issue; solar variations a possible issue, currently not accounted for)) – Applied to OMPS (Vasilkov et al., 2014, AMT); required changes to OMI code (spline interpolation; use of synthetic solar spectrum to generate tables) – Some difference seen between OMI and OMPS that are currently not understood – Added simple error estimates, errors go as 1/f r

TEMPO clouds: other options O2-O2 (~477 nm) – Implemented by KNMI for OMI, – ~P 2 dependence, weak band (~1% signal) – Validated with CloudSat, OMCLDRR intercomparisons – New visible fitting at GSFC also fits this band, minor differences with KNMI fitting – Potential backup cloud algorithm for TEMPO – Currently implementing, testing F90 version, very fast, currently uses same surface reflectivity as KNMI, uses climatological temperature profiles (important!)

Tall poles for CLDRR applied to TEMPO Soft-calibration – Significant striping seen in OMI (could be an issue for any cloud algorithm from similar instruments) – How do we apply soft calibration for TEMPO? Using data over land did not work well for OMI (surface BRDF effects an issue?) use cloud climatology from OMI; identify areas of low cloud pressure variability (e.g., low marine clouds)? posterior correction to cloud OCPs?

Backups

First Global Free Tropospheric NO 2 Concentrations Derived Using a Cloud Slicing Technique Applied to Satellite Observations from the Aura Ozone Monitoring Instrument (OMI) S. Choi 1,2, J. Joiner 2, Y. Choi 3, B. N. Duncan 2, E. Bucsela 4 (Currently in AMTD) 1 Science Systems and Applications, Inc. (SSAI), 2 NASA Goddard Space Flight Center, 3 University of Houston, 4 SRI Interntaional NASA GSFC Laboratory for Atmospheric Chemistry and Dynamics These global maps show 3-month seasonal averages of free tropospheric NO 2 mixing ratio (gridded at 6 o latitude x 8 o longitude resolution) for Dec-Feb (top panel) and Jun-Aug (bottom panel) These maps show clear signatures of anthropogenic contributions near densely populated regions as well as lightning contributions over tropical oceans.

Comparison of OMPS and OMI OMPS OMI Cloud pressure retrievals of Jan 07, 2013 (ECF>0.05) Most cloud OCP patterns are same (northern Pacific, Mexico, northern Atlantic, northern China) OMI OCP retrievals are somewhat lower than OMPS particularly in the tropics 8

Comparison of PDFs of cloud pressure, OMI O2-O2 added 9 Southern mid-latitudes Tropics Northern mid-latitudes Differences between OMI RRS and OMPS cloud pressures appear to be similar to differences between OMI RRS and OMI O2-O2 except for the differences in the tropics.