Cross Section of Unconfined and Confined Aquifers

Slides:



Advertisements
Similar presentations
Groundwater Hydraulics Daene C. McKinney
Advertisements

Groundwater Flow Equations
Yhd Soil and Groundwater Hydrology
CIV3248 Flow Net Workshop1 CIV3248 Groundwater,seepage and environmental engineering Workshop (4) Flownet sketching Keith H McKenry.
28.1 The Hydrologic Cycle Hydrological cycle: natural circulation of water from the oceans to the air, then to the ground, then to the oceans and then.
STABILITY ANALYSIS IN PRESENCE OF WATER Pore pressures Rainfall Steady state flow and transient flow.
Philip B. Bedient Civil & Environmental Engineering Rice University
Effects of Boundary Condition on Shape of Flow Nets
Water Movement in Soil and Rocks. Two Principles to Remember:
Properties of Aquifers
Midterm Review. Calculus Derivative relationships d(sin x)/dx = cos x d(cos x)/dx = -sin x.
Ground-Water Flow and Solute Transport for the PHAST Simulator Ken Kipp and David Parkhurst.
Theory of Groundwater Flow
Review Session 1. Measuring Evapotranspiration Lysimeter – a large container holding soil and plants. Mass Balance: Debate: Pros/Cons.
Watershed Hydrology, a Hawaiian Prospective; Groundwater Ali Fares, PhD Evaluation of Natural Resource Management, NREM 600 UHM-CTAHR-NREM.
Universal college engineering & technology
ESS 454 Hydrogeology Module 2 Properties of Materials Basic Physics Darcy’s Law Characteristics of Aquifers Elasticity and Storage Instructor: Michael.
8. Permeability (Das, chapter 7)
Derivation of the Dupuit Equation - Unconfined Flow
Institute of Space Technology Groundwater Hydrology Hydrology and Water Resources RSGIS Institute of Space Technology Jan 07, 2014.
Groundwater Hydrology Rachel Clark, P.E. Environmental Compliance Coordinator KPB Risk Management.
Ground Water Hydrology Introduction
LINTON UNIVERSITY COLLEGE SCHOOL OF CIVIL ENGINEERING
Stream Function Definitions
Прикладная Гидрогеология Tomsk Polytechnic University Tomsk, Russian Federation Spring Semester 2014 Yoram Eckstein, Ph.D. Fulbright Professor 2013/2014.
Hydrology & Water Resources Engineering
CHAPTER SEVEN Groundwater
Baseflow Recession Q0.
Groundwater 1 Groundwater flows slowly through the voids between grains or the cracks in solid rock. Much of our knowledge depends on field and laboratory.
Lecture Notes Applied Hydrogeology
Theory of Groundwater Flow
Darcy’s Law and Flow CIVE Darcy allows an estimate of: the velocity or flow rate moving within the aquifer the average time of travel from the head.
Aquifer Storage Properties CVEG 5243 Ground Water Hydrology T. Soerens.
Groundwater pumping to remediate groundwater pollution March 5, 2002.
CHAPTER SEVEN INTRODUCTORY WELL HYDROLOGY. GROUNDWATER OCCURRENCE.
ATM 301 Lecture #7 (sections ) Soil Water Movements – Darcy’s Law and Richards Equation.
Fundamentals of Groundwater Flow (Flow in the Natural Environment) A Watershed Dynamics Tutorial © John F. Hermance March 21, 2003 Go to main directory.
Lecture 20 Ground Water (3) Ground water movement
Principles of Groundwater Flow
Darcy’s Law Philip B. Bedient Civil and Environmental Engineering Rice University.
CE 3354 Engineering Hydrology Lecture 21: Groundwater Hydrology Concepts – Part 1 1.
How does groundwater flow ? February 26, TOC  Definitions  Groundwater flow overview Equipotentials and flowlines  Wells  Laplace  Boundary.
SI and English Units SI: - Mass = kilogram - Length = meter
CE 3354 Engineering Hydrology
Groundwater Supply Dr. Martin T. Auer Michigan Tech Department of Civil & Environmental Engineering.
Get the Ground Water Picture. Individual Questions The horizontal scale of the cross section is 1 inch = 1 mile. The vertical scale is 1 inch = 50 ft.
Groundwater Flow Equations Groundwater Hydraulics Daene C. McKinney.
Groundwater Supply Dr. Martin T. Auer Michigan Tech Department of Civil & Environmental Engineering.
Groundwater Systems D Nagesh Kumar, IISc Water Resources Planning and Management: M8L3 Water Resources System Modeling.
Water Resources Assessment Main Resources – Surface water – Groundwater – Unconventional Tools – Flood routing/delineation models – Runoff models – GIS.
1 Permeability. 2 Soil Permeability- Definition It is a property of soil that allows the flow of fluid through its interconnected void space OR It is.
Properties of Aquifers
Chapter1:Static pressure in soil due to water.
Groundwater Review Aquifers and Groundwater Porosity
Groundwater Learning objectives
Flow in Aquifers – 1 Confined Aquifer Flow
Darcy’s Law and Richards Equation
Principles of Groundwater Flow
HYDROLOGY Lecture 6 GROUNDWATER 2
Aquifers and Groundwater flow
Steady flow in a confined aquifer
Some Quiz Questions Unit: Subsurface Flow.
Philip B. Bedient Civil and Environmental Engineering Rice University
Groundwater hydraulics – wells – lectures 7
Some Quiz Questions Unit: Subsurface Flow.
Department of Civil & Environmental Engineering
Water Table: is the level at which the groundwater pressure is equal to atmospheric pressure. Aquitard: is a zone within the earth that restricts.
Chapter 2 Equations & Numerical Methods
Water Table: is the level at which the groundwater pressure is equal to atmospheric pressure. Aquitard: is a zone within the earth that restricts.
Philip B. Bedient Civil and Environmental Engineering Rice University
Presentation transcript:

Cross Section of Unconfined and Confined Aquifers

Unconfined Aquifer Systems Unconfined aquifer: an aquifer where the water table exists under atmospheric pressure as defined by levels in shallow wells Water table: the level to which water will rise in a well drilled into the saturated zone

Confined Aquifer Systems Confined aquifer: an aquifer that is overlain by a relatively impermeable unit such that the aquifer is under pressure and the water level rises above the confined unit Potentiometric surface: in a confined aquifer, the hydrostatic pressure level of water in the aquifer, defined by the water level that occurs in a lined penetrating well

Special Aquifer Systems Leaky confined aquifer: represents a stratum that allows water to flow from above through a leaky confining zone into the underlying aquifer Perched aquifer: occurs when an unconfined water zone sits on top of a clay lens, separated from the main aquifer below

Ground Water Hydraulics Hydraulic conductivity, K, is an indication of an aquifer’s ability to transmit water Typical values: 10-2 to 10-3 cm/sec for Sands 10-4 to 10-5 cm/sec for Silts 10-7 to 10-9 cm/sec for Clays

Ground Water Hydraulics Transmissivity (T) of Confined Aquifer -The product of K and the saturated thickness of the aquifer T = Kb - Expressed in m2/day or ft2/day - Major parameter of concern - Measured thru a number of tests - pump, slug, tracer

Ground Water Hydraulics Intrinsic permeability (k) Property of the medium only, independent of fluid properties Can be related to K by: K = k(g/µ) where: µ = dynamic viscosity  = fluid density g = gravitational constant

Storage Coefficient S = Vol/ (AsH) Relates to the water-yielding capacity of an aquifer S = Vol/ (AsH) It is defined as the volume of water that an aquifer releases from or takes into storage per unit surface area per unit change in piezometric head - used extensively in pump tests. For confined aquifers, S values range between 0.00005 to 0.005 For unconfined aquifers, S values range between 0.07 and 0.25, roughly equal to the specific yield

Regional Aquifer Flows are Affected by Pump Centers Streamlines and Equipotential lines

Derivation of the Dupuit Equation - Unconfined Flow

Dupuit Assumptions For unconfined ground water flow Dupuit developed a theory that allows for a simple solution based off the following assumptions: 1) The water table or free surface is only slightly inclined 2) Streamlines may be considered horizontal and equipotential lines, vertical 3) Slopes of the free surface and hydraulic gradient are equal

Derivation of the Dupuit Equation Darcy’s law gives one-dimensional flow per unit width as: q = -Kh dh/dx At steady state, the rate of change of q with distance is zero, or d/dx(-Kh dh/dx) = 0 OR (-K/2) d2h2/dx2 = 0 Which implies that, d2h2/dx2 = 0

Dupuit Equation Integration of d2h2/dx2 = 0 yields h2 = ax + b Where a and b are constants. Setting the boundary      condition h = ho at x = 0, we can solve for b b = ho2 Differentiation of h2 = ax + b allows us to solve for a, a = 2h dh/dx And from Darcy’s law, hdh/dx = -q/K

Dupuit Equation So, by substitution h2 = h02 – 2qx/K Setting h = hL2 = h02 – 2qL/K Rearrangement gives q = K/2L (h02- hL2) Dupuit Equation Then the general equation for the shape of the parabola is h2 = h02 – x/L(h02- hL2) Dupuit Parabola However, this example does not consider recharge to the aquifer.

Cross Section of Flow q

Adding Recharge W - Causes a Mound to Form Divide

Dupuit Example Example: 2 rivers 1000 m apart K is 0.5 m/day average rainfall is 15 cm/yr evaporation is 10 cm/yr water elevation in river 1 is 20 m water elevation in river 2 is 18 m Determine the daily discharge per meter width into each River.

Example L = 1000 m Dupuit equation with recharge becomes h2 = h02 + (hL2 - h02) + W(x - L/2) If W = 0, this equation will reduce to the parabolic Equation found in the previous example, and q = K/2L (h02- hL2) + W(x-L/2) Given: L = 1000 m K = 0.5 m/day h0 = 20 m hL= 28 m W = 5 cm/yr = 1.369 x 10-4 m/day

Example For discharge into River 1, set x = 0 m q = K/2L (h02- hL2) + W(0-L/2) = [(0.5 m/day)/(2)(1000 m)] (202 m2 – 18 m2 ) + (1.369 x 10-4 m/day)(-1000 m / 2) q = – 0.05 m2 /day The negative sign indicates that flow is in the opposite direction From the x direction. Therefore, q = 0.05 m2 /day into river 1

Example For discharge into River 2, set x = L = 1000 m: q = K/2L (h02- hL2) + W(L-L/2) = [(0.5 m/day)/(2)(1000 m)] (202 m2 – 18 m2 ) + (1.369 x 10-4 m/day)(1000 m –(1000 m / 2)) q = 0.087 m2/day into River 2 By setting q = 0 at the divide and solving for xd, the water divide is located 361.2 m from the edge of River 1 and is 20.9 m high

Flow Nets - Graphical Flow Tool Q = KmH / n n = # head drops m= # streamtubes K = hyd cond H = total head drop

Flow Net in Isotropic Soil Portion of a flow net is shown below Y Stream tube F Curvilinear Squares

Flow Net Theory Streamlines Y and Equip. lines  are . Streamlines Y are parallel to no flow boundaries. Grids are curvilinear squares, where diagonals cross at right angles. Each stream tube carries the same flow.

Seepage Flow under a Dam