Electromagnetic form factors in the relativized Hypercentral CQM M. De Sanctis, M.M.Giannini, E. Santopinto, A. Vassallo Introduction The hypercentral.

Slides:



Advertisements
Similar presentations
Electromagnetic form factors in the relativized Hypercentral CQM E. Santopinto Trieste 22_26 May 2006 M. Ferraris, M.Giannini, M. Pizzo, E. Santopinto,
Advertisements

Exclusive   and  electro-production at high Q 2 in the resonance region Mark Jones Jefferson Lab TexPoint fonts used in EMF. Read the TexPoint manual.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Sigma meson cloud and Proton’s light flavor sea quarks Peking University, China ( 北京大学 ) Feng Huang ( 黄 峰) Feng Huang ( 黄 峰) Supervisor: Bo-Qiang Ma (马伯强)
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
Onset of Scaling in Exclusive Processes Marco Mirazita Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati First Workshop on Quark-Hadron.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Electromagnetic multipole moments of baryons Alfons Buchmann University of Tübingen 1.Introduction 2.Method 3.Observables 4.Results 5.Summary NSTAR 2007,
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
Electroexcitation of the Roper resonance from CLAS data Inna Aznauryan, Volker Burkert Jefferson Lab N * 2007, Bonn, September 7, 2007.
1 Nuclear Binding and QCD ( with G. Chanfray) Magda Ericson, IPNL, Lyon SCADRON70 Lisbon February 2008.
A New QMC Model Ru-Keng Su Fudan University Hefei.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
The Structure of the Nucleon Introduction Meson cloud effects: two-component model Strange form factors Results Summary and conclusions Roelof Bijker ICN-UNAM.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
UK Hadron Physics D. G. Ireland 10 October 2014 NuPECC Meeting, Edinburgh.
Modeling the Hadronization of Quark Matter G. Toledo Sánchez Instituto de Fisica UNAM, Mexico A. Ayala, G. Paic, M. Martinez ICN-UNAM, México Strangeness.
Testing saturation with diffractive jet production in DIS Cyrille Marquet SPhT, Saclay Elastic and Diffractive Scattering 2005, Blois, France based on.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Wolfgang Cassing Erice Parton dynamics and hadronization from the sQGP.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physics National Taiwan University Lattice QCD Journal Club, NTU, April 20, 2007 Pascalutsa,
Accessing Orbital Angular Momentum Thru Pion Cloud Itaru Nakagawa RIKEN/RBRC.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
1 Keitaro Nagata, Chung-Yuan Christian University Atsushi Hosaka, RCNP, Osaka Univ. Structure of the nucleon and Roper Resonance with Diquark Correlations.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Nucleon Resonances in  Scattering up to energies W < 2.0 GeV  introduction  a meson-exchange model for  scattering  conventional resonance parameters.
BINP '06 1 Nucleon Form Factors Strike Back R. Baldini Ferroli, Centro Fermi/INFN-LNF 2 e + e - collisions from  to  BINP 27 feb
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Relativistic Collective Coordinate System of Solitons and Spinning Skyrmion Toru KIKUCHI (Kyoto Univ.) Based on arXiv: ( Phys. Rev. D 82,
Nucleon Elastic Form Factors: An Experimentalist’s Perspective Outline: The Fib and the Questions EM FF Strangeness Glen Warren Battelle & Jefferson Lab.
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Exclusive electroproduction of two pions at HERA V. Aushev (on behalf of the ZEUS Collaboration) April 11-15, 2011 Newport News Marriott at City Center.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Hyperon Polarization in Heavy ion Collisions C. C. Barros Jr. Universidade Federal de Santa Catarina Brasil Strangeness in Quark Matter 2013 University.
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
A Precision Measurement of G E p /G M p with BLAST Chris Crawford Thesis Defense April 29, 2005.
Nucleon Form Factors Understood by Vector Meson Exchange Earle Lomon(MIT)Jlab12/12/08 Summary: Description of model, history & early success Details of.
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
IN THE NAME OF GOD Spectrum of Nonstrange Baryons Resonances by Using a New Mass Formula under the Octic Potential Presented by: Nasrin Salehi Faculty.
The hypercentral Constituent Quark Model
M. Radici - Time-like form factors
Polarization in charmless B VV decays
Structure and Dynamics of the Nucleon Spin on the Light-Cone
Handout 5 : Electron-Proton Elastic Scattering
Handout 5 : Electron-Proton Elastic Scattering
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
N* Transition form factors in a light-cone relativistic quark model
Exciting Hadrons Vladimir Pascalutsa
Polarized Structure Function of Nucleon and Orbital Angular Momentum
Excited state nucleon spectrum
Towards Understanding the In-medium φ Meson with Finite Momentum
Current Status of EBAC Project
Samara State University, Samara, Russia
Pion transition form factor in the light front quark model
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Electromagnetic form factors in the relativized Hypercentral CQM M. De Sanctis, M.M.Giannini, E. Santopinto, A. Vassallo Introduction The hypercentral Constituent Quark Model The elastic nucleon form factors (relativistic effects) Conclusion N 05 Frascati, 13 october 2005

New Jlab data on nucleon f.f. Give rise to problems: compatibility with old (Rosenbluth plot) data why the ratio G E /G M decreases? is there any zero in the f.f. ?

VMD models (fits) FF = F intr * VMD propagators Mesons F intr JIL  dipole monopole G K   QCD-interpolation

Skyrme Model Holzwarth 1996,2002 ff given by soliton + VMD dip at Q 2 3 GeV 2 Boosting of the soliton dip at Q 2 10 GeV 2 Skyrmion (nucleon) mass 1648 MeV

The Hypercentral Constituent Quark Model M. Ferraris et al., Phys. Lett. B364, 231 (1995)

Jacobi coordinates SPACE WAVE FUNCTION 12 3   = r- r 12 √ 2 = r 2 r2 rr √ 6 Hyperspherical coordinates (   (x      22 +x = (size)  arc tg  (shape)

Quark-antiquark lattice potentialG.S. Bali Phys. Rep. 343, 1 (2001)

3-quark lattice potential G.S. Bali Phys. Rep. 343, 1 (2001)

Electromagnetic properties Photocouplings M. Aiello et al., PL B387, 215 (1996) Helicity amplitudes (transition f.f.) M. Aiello et al., J. of Phys. G24, 753 (1998) Elastic form factors of the nucleon M. De Sanctis et al., EPJ A1, 187 (1998) Structure functions to be published Fixed parameters predictions

Dynamical model (Mainz group)

please note the calculated proton radius is about 0.5 fm (value previously obtained by fitting the helicity amplitudes) not good for elastic form factors there is lack of strength at low Q 2 (outer region) in the e.m. transitions emerging picture: quark core (0.5 fm) plus (meson or sea- quark) cloud

ELASTIC FORM FACTORS 1. - Relativistic corrections to the elastic form factors 2. - Results with the semirelativistic CQM 3. - Quark form factors

1.- Relativistic corrections to form factors Breit frame Lorentz boosts applied to the initial and final state Expansion of current matrix elements up to first order in quark momentum Results A rel (Q 2 ) = F A n.rel (Q 2 eff ) F = kin factor Q 2 eff = Q 2 (M N /E N ) 2 De Sanctis et al. EPJ 1998

calculated

2.- Results with the semirelativistic CQM M. De Sanctis, M. G., E. Santopinto, A. Vassallo, nucl-th/ Relativistic kinetic energy Boosts to initial and final states Expansion of current to any order Conserved current

 and  not much different from the NR case V(x) = -  /x +  x

Calculated values!

Q 2 F 2 p /F 1 p Q F 2 p /F 1 p

3.- Quark form factors M. De Sanctis, M. G., E. Santopinto, A. Vassallo, nucl-th/ Quark form factors are added in the current ff = F intr * quark form factors semirelativistic hCQM input (calculated) Monopole + dipole form for qff Fit of: –G E p /G M p ratio (polarization data) –G M p ; G E n ;G M n

Q 2 F 2 p /F 1 p Q F 2 p /F 1 p

Conclusion The hCQM provides a consistent framework for the description of all the 4 nucleon electromagnetic form factors Relativity is crucial in explaining the decrease of the ratio G E /G M Quark form factors are necessary in order to get a good reproduction of the Q 2 behaviour (meson cloud is missing)