Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,

Slides:



Advertisements
Similar presentations
ENTANGLEMENT AND QUANTUM CONTROL OF COLD ATOMS CONFINED IN AN OPTICAL LATTICE CARLO SIAS Università di Pisa Quantum Computers, algorithms and chaos – Varenna.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Superconducting qubits
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Emergent Majorana Fermion in Cavity QED Lattice
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Nanophotonic Devices for Quantum Optics Feb 13, 2013 GCOE symposium Takao Aoki Waseda University.
Entanglement of Movable Mirrors in a Correlated Emission Laser
Nonlinear microwave optics in superconducting quantum circuits Zachary Dutton Raytheon BBN Technologies BBN collaborators Thomas Ohki John Schlafer Bhaskar.
Low-Light-Level Cross Phase Modulation with Cold Atoms J.H. Shieh, W.-J. Wang and Ying-Cheng Chen Institute of Atomic and Molecular Sciences, Academia.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Eugene Demler Harvard University Strongly correlated many-body systems: from electronic materials to ultracold atoms.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
1 Coherent processes in metastable helium at room temperature Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker Laboratoire Aimé Cotton, Orsay, France.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Magnetism of spinor BEC in an optical lattice
George R. Welch Marlan O. Scully Irina Novikova Andrey Matsko M. Suhail Zubairy Eugeniy Mikhailov M. Suhail Zubairy Irina Novikova Andrey Matsko Ellipticity-Dependent.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Selim Jochim, Universität Heidelberg
Practical Aspects of Quantum Information Imperial College London Martin Plenio Department of Physics and Institute for Mathematical Sciences Imperial College.
Decoherence issues for atoms in cavities & near surfaces Peter Knight, Imperial College London work with P K Rekdal,Stefan Scheel, Almut Beige, Jiannis.
EXPLORING NATURE WITH A QUANTUM SIMULATOR
Imperial College London Institute for Mathematical Sciences & Quantum Optics and Laser Science Group Blackett Laboratory Imperial College London
Entanglement in the Kondo Spin Chain Abolfazl Bayat 1, Sougato Bose 1, Pasquale Sodano 2 1 University College London, London, UK. 2 University of Perugia,
IOP, Bhubaneswar 22 nd Feb 2014 Prospect of using single photons propagating through Rydberg EIT medium for quantum computation Ashok Mohapatra National.
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Quantum Simulation Dieter.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Jonathan P. Dowling LINEAR OPTICAL QUANTUM INFORMATION PROCESSING, IMAGING, AND SENSING: WHAT’S NEW WITH N00N STATES? quantum.phys.lsu.edu Hearne Institute.
Quantum simulation for frustrated many body interaction models Lanzhou Aug. 2, 2011 Zheng-Wei Zhou( 周正威) Key Lab of Quantum Information, CAS, USTC In collaboration.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
When are Correlations Quantum?: Verification and Quantification of Entanglement with simple measurements Imperial College London Martin B Plenio Koenraad.
Jonathan P. Dowling OPTICAL QUANTUM COMPUTING quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Department of Physics and Astronomy Quantum.
Fast and Robust Laser Cooling of Trapped Systems Javier Cerrillo-Moreno, Alex Retzker, Martin B. Plenio Obergurgl, 7 th June 2010.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Jonathan P. Dowling QUANTUM SENSORS: WHAT’S NEW WITH N00N STATES?
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Exploring many-body physics with synthetic matter
Quantum simulation for frustrated many body interaction models
Strongly-correlated system Quantum phenomena of multi-component bosonic gases in an optical lattice Yongqiang Li 国防科学技术大学
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Superconducting artificial atoms coupled to 1D open space
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum Phase Transition of Light: A Renormalization Group Study
On the collapses and revivals in the Rabi Hamiltonian
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Anatomy of a Phase Shift
Spectroscopy of ultracold bosons by periodic lattice modulations
or Quantum Nonlinear Optics without Photons
Kenji Kamide* and Tetsuo Ogawa
Tuning Interactions Between Quantum Dots and Cavities
Computational approaches for quantum many-body systems
Presentation transcript:

Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences, Imperial College London 2 QOLS, Blackett Laboratory, Imperial College London London, 04/05/2007

Cavity QED systems Strong Coupling: Non-trivial joint dynamics for atoms and photons

Array of coupled cavities Atoms in different cavities can “talk” to each other mediated by the photons Photons in the same cavity can “talk” to each other mediated by the atoms

Summary Photon nonlinearities EIT-based schemes Stark-shift based scheme Bose-Hubbard models Polaritons in coupled array of cavities The photonic limit Spin Chains Heisenberg model (XYZ)

Summary Photon nonlinearities EIT-based schemes Stark-shift based scheme Bose-Hubbard models Polaritons in coupled array of cavities The photonic limit Spin Chains Heisenberg model (XYZ)

Photon-Photon interactions Kerr-type nonlinear interaction: Several applications Photon blockade Imamoğlu et at, PRL 79, 1467 (1997) nonlinear optics Boyd, Nonlinear Optics, (1992) Quantum nondemolition measurents Imoto et al, PRA 32, 2287 (1985) Optical quantum computing Turchette et al, PRL 75, 4710 (1995) etc…

Photon-Photon interactions Kerr-type nonlinear interaction: Natural Kerr interactions are far too small …

Electromagnetically Induced Transparency nonlinearities     Imamo ğ lu et at, PRL 79, 1467 (1997) g h 

Electromagnetically Induced Transparency nonlinearities  g  N x

Electromagnetically Induced Transparency nonlinearities  g  N x

Electromagnetically Induced Transparency nonlinearities  g  N x

Electromagnetically Induced Transparency nonlinearities  h  g  4

 h  g  4 Only dark state polaritons p 0 couple to level 4!

Electromagnetically Induced Transparency nonlinearities  h  g  4

 h 2 3  g  4 1

 h 2 3  g  4 1 We didn’t assume:  h

Electromagnetically Induced Transparency nonlinearities Example: Toroidal Microcavities Spillane et al, PRA 71, (2005) Aoki et al, Nature (2006)

Electromagnetically Induced Transparency nonlinearities Example: Toroidal Microcavities Spillane et al, PRA 71, (2005) Aoki et al, Nature (2006)

Could we find a simpler set-up producing a nonlinearity comparable with the EIT one?

A.C. Stark shift nonlinearity  g   

1 2 3  g    Dispersive regime:

A.C. Stark shift nonlinearity

Dispersive regime:

A.C. Stark shift nonlinearity Dispersive regime:

A.C. Stark shift nonlinearity - Same strength as EIT scheme - One level less

Summary Photon nonlinearities EIT-based schemes Stark-shift based scheme Bose-Hubbard model Polaritons in coupled array of cavities The photonic limit Spin Chains Heisenberg model (XYZ)

Bose Hubbard Model Fisher et al, PRB 40, 546 (1989)

Cold atoms in Optical Lattices Jaksch et al, PRL 81, 3108 (1998) Greiner et al, Nature 415, 39 (2002)

Cold atoms in Optical Lattices Jaksch et al, PRL 81, 3108 (1998) Greiner et al, Nature 415, 39 (2002)

The set-up

Photons can hope from one cavity to a neighbouring one Yariv et al, Optics Lett. 24, 711 (1999)

The polaritonic case  h  g  4

 h  g  4

real pred.Fabry-Perot: x 10 3 Photonic bgc: x 10 5 Imperial: 40 ?Micro-toroid: 53 5 x 10 6 Spillane et al, PRA 2005 Soda et al, Nature Materials 2005

The polaritonic case

The photonic case a.c. Stark shift nonlinearity EIT nonlinearity

The photonic case

real pred.Fabry-Perot: Photonic bgc: x 10 3 Imperial: 0.8 ?Micro-toroid: x 10 5 Spillane et al, PRA 2005 Soda et al, Nature Materials 2005

Summary Photon nonlinearities EIT-based schemes Stark-shift based scheme Photonic Bose-Hubbard models Polaritons in coupled array of cavities The photonic limit Spin Chains Heisenberg model (XYZ)

Spins Lattices Open questions in condensed- matter physics: high T c superconductivity, frustration, etc… Applications in quantum information science: entanglement propagation, measurement-based quantum computation, etc…

Spins Lattices: Heisenberg (XYZ) model

XX and YY interactions: Spins Lattices: Heisenberg (XYZ) model

XX and YY interactions: Spins Lattices: Heisenberg (XYZ) model

XX and YY interactions: Spins Lattices: Heisenberg (XYZ) model

ZZ interactions + magnetic field: Spins Lattices: Heisenberg (XYZ) model

+ Suzuki-Trotter Decomposition: Spins Lattices: Heisenberg (XYZ) model

Cluster state generation

Spins Lattices: XYZ model

real pred. real pred Fabry-Perot: x Photonic bc: x Imperial: 40 ? 50 ?Micro-toroid: 53 5 x Spillane et al, PRA 2005 Soda et al, Nature Materials 2005

References Nonlinearities: EIT scheme: Imamoğlu et at, PRL 79, 1467 (1997) Hartmann, Plenio, arXiv: Light shift scheme: Brandão, Hartmann, Plenio, arXiv:0705.xxxx Bose Hubbard model: Hartmann, Brandão, Plenio, Nature Physics 2, 849 (2006), quant-ph/ Subsequent proposals: Angelakis, Santos, Bose, quant-ph/ Greentree, Tahan, Cole, Hollenberg, Nature Physics 2, 856 (2006), quant-ph/ Na, Utsonumiya, Tian, Yamamoto, quant-ph/ Rossini, Fazio, Phase diagram of strongly correlated polaritons in a 1D array of coupled cavities, in preparation Spin Hamiltonians : Hartmann, Brand ã o, Plenio, arXiv:

Thank you! Michael J. Hartmann Martin B. Plenio