Variability – Waiting Times

Slides:



Advertisements
Similar presentations
Operations Management
Advertisements

OPSM 301: Operations Management Session 12: Service processes and flow variability Koç University Graduate School of Business MBA Program Zeynep Aksin.
Matching Supply with Demand: An Introduction to Operations Management Gérard Cachon ChristianTerwiesch All slides in this file are copyrighted by Gerard.
Capacity Setting and Queuing Theory
Chapter Queueing Notation
Queueing Models and Ergodicity. 2 Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing models.
S. D. Deshmukh OM V. Capacity Planning in Services u Matching Supply and Demand u The Service Process u Performance Measures u Causes of Waiting u Economics.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Capacity Planning and Queuing Models.
S. Chopra/Operations/Managing Services1 Operations Management: Capacity Management in Services Module u Why do queues build up? u Process attributes and.
Operations Management Waiting Lines. 2 Ardavan Asef-Vaziri Sep-09Operations Management: Waiting Lines1  Understanding the phenomenon of waiting  Measures.
OPSM 405 Service Management Class 19: Managing waiting time: Queuing Theory Koç University Zeynep Aksin
Operations Management Waiting Lines. 2 Ardavan Asef-Vaziri Dec-2010Operations Management: Waiting Lines1  Questions: Can we process the orders? How many.
1 Ardavan Asef-Vaziri Sep-09Operations Management: Waiting Lines2  Made-to-stock (MTS) operations  Product is manufactured and stocked in advance of.
Queuing Systems Chapter 17.
Operations Management Waiting Lines. 2 Ardavan Asef-Vaziri Dec-2010Operations Management: Waiting Lines1  Questions: Can we process the orders? How many.
1 Performance Evaluation of Computer Networks Objectives  Introduction to Queuing Theory  Little’s Theorem  Standard Notation of Queuing Systems  Poisson.
Queuing and Transportation
Data Communication and Networks Lecture 13 Performance December 9, 2004 Joseph Conron Computer Science Department New York University
Management of Waiting Lines
Polling: Lower Waiting Time, Longer Processing Time (Perhaps)
14-1. Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 14 Capacity Planning and Queuing Models.
Queueing Theory Professor Stephen Lawrence Leeds School of Business University of Colorado Boulder, CO
Queueing Theory Professor Stephen Lawrence Leeds School of Business University of Colorado Boulder, CO
OM&PM/Class 6b1 1Operations Strategy 2Process Analysis 3Lean Operations 4Supply Chain Management 5Capacity Management in Services –Class 6b: Capacity Analysis.
Chapter 18 Management of Waiting Lines
7/3/2015© 2007 Raymond P. Jefferis III1 Queuing Systems.
Capacity Management in Services Module
1 Ardavan Asef-Vaziri Sep-09Operations Management: Waiting Lines3  Terminology: The characteristics of a queuing system is captured by five parameters:
Lecture 4 Mathematical and Statistical Models in Simulation.
WINTER 2012IE 368. FACILITY DESIGN AND OPERATIONS MANAGEMENT 1 IE 368: FACILITY DESIGN AND OPERATIONS MANAGEMENT Lecture Notes #3 Production System Design.
Buffer or Suffer Principle
Queuing Models and Capacity Planning
OPSM 301: Operations Management
A Somewhat Odd Service Process (Chapters 1-6)
Introduction to Management Science
Simulation Examples ~ By Hand ~ Using Excel
Copyright ©: Nahrstedt, Angrave, Abdelzaher, Caccamo1 Queueing Systems.
Management of Waiting Lines McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
OMG Operations Management Spring 1997 CLASS 6: Process Design and Performance Measurement Harry Groenevelt.
Introduction to Operations Research
Queueing Analysis of Production Systems (Factory Physics)
Structure of a Waiting Line System Queuing theory is the study of waiting lines Four characteristics of a queuing system: –The manner in which customers.
Supplement C Waiting Line Models Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition © Wiley 2010.
18 Management of Waiting Lines.
Queuing Theory Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Chapter.
1 Systems Analysis Methods Dr. Jerrell T. Stracener, SAE Fellow SMU EMIS 5300/7300 NTU SY-521-N NTU SY-521-N SMU EMIS 5300/7300 Queuing Modeling and Analysis.
Chapter 16 Capacity Planning and Queuing Models
1 Chapters 8 Overview of Queuing Analysis. Chapter 8 Overview of Queuing Analysis 2 Projected vs. Actual Response Time.
OPSM 301: Operations Management Session 19: Flow variability Koç University Zeynep Aksin
Matching Supply with Demand: An Introduction to Operations Management Gérard Cachon ChristianTerwiesch All slides in this file are copyrighted by Gerard.
Slide 1 Matching Supply with Demand: An Introduction to Operations Management Gérard Cachon ChristianTerwiesch All slides in this file are copyrighted.
OMSAN LOJİSTİK. Top Management Program in Logistics & Supply Chain Management (TMPLSM) Production and Operations Management 3: Process Analysis.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Chapter 6 Managing Capacity
Copyright ©: Nahrstedt, Angrave, Abdelzaher, Caccamo1 Queueing Systems.
1 1 Slide Chapter 12 Waiting Line Models n The Structure of a Waiting Line System n Queuing Systems n Queuing System Input Characteristics n Queuing System.
OPSM 301: Operations Management Session 13-14: Queue management Koç University Graduate School of Business MBA Program Zeynep Aksin
© 2015 McGraw-Hill Education. All rights reserved. Chapter 17 Queueing Theory.
Management of Waiting Lines Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent.
Random Variables r Random variables define a real valued function over a sample space. r The value of a random variable is determined by the outcome of.
1 BIS 3106: Business Process Management (BPM) Lecture Nine: Quantitative Process Analysis (2) Makerere University School of Computing and Informatics Technology.
Queueing Theory/Waiting Line: Models and Analysis Navneet Vidyarthi
Managerial Decision Making Chapter 13 Queuing Models.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 18 Management of Waiting Lines.
Modeling the Optimization of a Toll Booth Plaza By Liam Connell, Erin Hoover and Zach Schutzman Figure 1. Plot of k values and outputs from Erlang’s Formula.
Lin/Operations/Managing Services1 Capacity Management in Services Module u Queuing processes and performance measures u Why do queues build up? u Performance.
Managing Flow Variability: Safety Capacity
Management of Waiting Lines
Presentation transcript:

Variability – Waiting Times QUAN6610 Variability – Waiting Times Sources: Matching Supply with Demand, 3e, Cachon/Terwiesch Prepared by Jim Grayson, PhD

A Somewhat Odd Service Process Patient Arrival Time Service 1 2 3 4 5 6 7 8 9 10 11 12 15 20 25 30 35 40 45 50 55 7:00 7:10 7:20 7:30 7:40 7:50 8:00

A More Realistic Service Process Patient 1 Patient 3 Patient 5 Patient 7 Patient 9 Patient 11 Patient Arrival Time Service 1 2 3 4 5 6 7 8 9 10 11 12 18 22 25 30 36 45 51 55 Patient 2 Patient 4 Patient 6 Patient 8 Patient 10 Patient 12 Time 7:00 7:10 7:20 7:30 7:40 7:50 8:00 3 2 Number of cases 1 2 min. 3 min. 4 min. 5 min. 6 min. 7 min. Service times

Variability Leads to Waiting Time Patient Arrival Time Service 1 2 3 4 5 6 7 8 9 10 11 12 18 22 25 30 36 45 51 55 Service time Wait time 7:00 7:10 7:20 7:30 7:40 7:50 8:00 5 4 3 2 1 Inventory (Patients at lab) 7:00 7:10 7:20 7:30 7:40 7:50 8:00

QUAN6610 What generates queues? An arrival rate that predictably exceeds the service rate (i.e., capacity) of a process. e.g., toll booth congestion on the NJ Turnpike during the Thanksgiving Day rush. Variation in the arrival and service rates in a process where the average service rate is more than adequate to process the average arrival rate. e.g., calls to a brokerage are unusually high during a particular hour relative to the same hour in other weeks (i.e., calls are high by random chance). Prepared by Jim Grayson, PhD

An Example of a Simple Queuing System Call center Answered Calls Incoming calls Sales reps processing calls Calls on Hold At peak, 80% of calls dialed received a busy signal. Customers getting through had to wait on average 10 minutes Extra telephone expense per day for waiting was $25,000. Blocked calls (busy signal) Abandoned calls (tired of waiting) Financial consequences Lost throughput Holding cost Lost goodwill Lost throughput (abandoned) Cost of capacity Cost per customer $$$ Revenue $$$

Data in Practical Call Center Setting Number of customers Number of customers Distribution Function Distribution Function Per 15 minutes Per 15 minutes 160 160 1 1 140 140 0.8 0.8 Exponential distribution Exponential distribution 120 120 100 100 0.6 0.6 80 80 0.4 0.4 60 60 Empirical distribution Empirical distribution (individual points) (individual points) 40 40 0.2 0.2 20 20 0:00:00 0:00:00 0:00:09 0:00:09 0:00:17 0:00:17 0:00:26 0:00:26 0:00:35 0:00:35 0:00:43 0:00:43 0:00:52 0:00:52 0:01:00 0:01:00 0:01:09 0:01:09 0:15 0:15 2:00 2:00 3:45 3:45 5:30 5:30 7:15 7:15 9:00 9:00 10:45 10:45 12:30 12:30 14:15 14:15 16:00 16:00 17:45 17:45 19:30 19:30 21:15 21:15 23:00 23:00 Inter - arrival time Time Seasonality vs. variability Need to slice-up the data Within a “slice”, exponential distribution (CVa=1) See chapter 6 for various data analysis tools

Predicable and unpredictable variation at An-ser QUAN6610 Predicable and unpredictable variation at An-ser 20 40 60 80 100 120 140 160 0:15 2:00 3:45 5:30 7:15 9:00 10:45 12:30 14:15 16:00 17:45 19:30 21:15 23:00 Number of customers Per 15 minutes Time Prepared by Jim Grayson, PhD

Defining inter-arrival times and a stationary process QUAN6610 Defining inter-arrival times and a stationary process An inter-arrival time is the amount of time between two arrivals to a process. An arrival process is stationary over a period of time if the number of arrivals in any sub-interval depends only on the length of the interval and not on when the interval starts. For example, if the process is stationary over the course of a day, then the expected number of arrivals within any three hour interval is about the same no matter which three hour window is chosen (or six hour window, or one hour window, etc). Processes tend to be non-stationary (or seasonal) over long time periods (e.g., over a day or several hours) but stationary over short periods of time (say one hour, or 15 minutes). Prepared by Jim Grayson, PhD

Stable and unstable queues QUAN6610 Stable and unstable queues a = 35 p = 120 m = 4 Utilization = 86% a = 35 p = 120 m = 3 Utilization = 114% Prepared by Jim Grayson, PhD

Arrivals to An-ser over the day are non-stationary QUAN6610 Arrivals to An-ser over the day are non-stationary 20 40 60 80 100 120 140 160 0:15 2:00 3:45 5:30 7:15 9:00 10:45 12:30 14:15 16:00 17:45 19:30 21:15 23:00 Number of customers Per 15 minutes Time The number of arrivals in a 3-hour interval clearly depends on which 3-hour interval your choose … … and the peaks and troughs are predictable (they occur roughly at the same time each day. Prepared by Jim Grayson, PhD

How to describe (or model) inter-arrival times QUAN6610 How to describe (or model) inter-arrival times We will use two parameters to describe inter-arrival times to a process: The average inter-arrival time. The standard deviation of the inter-arrival times. What is the standard deviation? Roughly speaking, the standard deviation is a measure of how variable the inter-arrival times are. Two arrival processes can have the same average inter-arrival time (say 1 minute) but one can have more variation about that average, i.e., a higher standard deviation. Prepared by Jim Grayson, PhD

Relative and absolute variability QUAN6610 Relative and absolute variability The standard deviation is an absolute measure of variability. Two processes can have the same standard deviation but one can seem much more variable than the other: Below are random samples from two processes that have the same standard deviation. The left one seems more variable. Prepared by Jim Grayson, PhD

Relative and absolute variability (cont) QUAN6610 Relative and absolute variability (cont) The previous slide plotted the processes on two different axes. Here, the two are plotted relative to their average and with the same axes. Relative to their average, the one on the left is clearly more variable (sometime more than 400% above the average or less than 25% of the average) Prepared by Jim Grayson, PhD

Coefficient of variation QUAN6610 Coefficient of variation The coefficient of variation is a measure of the relative variability of a process – it is the standard deviation divided by the average. The coefficient of variation of the arrival process: CVa = 10 /10 = 1 CVa = 10 /100 = 0.1 Prepared by Jim Grayson, PhD

Service time variability QUAN6610 Service time variability The coefficient of variation of the service time process: Frequency 800 Standard deviation of activity times = 150 seconds. Average call time (i.e., activity time) = 120 seconds. CVp = 150 / 120 = 1.25 600 400 200 100 200 300 400 500 600 700 800 900 1000 Call durations (seconds) Prepared by Jim Grayson, PhD

Modeling Variability in Flow Flow Rate Minimum{Demand, Capacity} = Demand = 1/a Outflow No loss, waiting only This requires u<100% Outflow=Inflow Buffer Processing Inflow Demand process is “random” Look at the inter-arrival times a: average inter-arrival time CVa = Often Poisson distributed: CVa = 1 Constant hazard rate (no memory) Exponential inter-arrivals Difference between seasonality and variability Processing p: average processing time Same as “activity time” and “service time” CVp = Can have many distributions: CVp depends strongly on standardization Often Beta or LogNormal IA1 IA2 IA3 IA4 Time St-Dev(processing times) Average(processing times) St-Dev(inter-arrival times) Average(inter-arrival times)

The Waiting Time Formula Average flow time T Flow rate Inventory waiting Iq Increasing Variability Inflow Outflow Entry to system Begin Service Departure Time in queue Tq Service Time p Theoretical Flow Time Flow Time T=Tq+p Utilization 100% Waiting Time Formula Variability factor Utilization factor Service time factor

Managing Waiting Systems: Points to Remember Variability is the norm, not the exception Variability leads to waiting times although utilization<100% Use the Waiting Time Formula to - get a qualitative feeling of the system - analyze specific recommendations / scenarios Managerial response to variability: - understand where it comes from and eliminate what you can - accommodate the rest by holding excess capacity Difference between variability and seasonality - seasonality is addressed by staffing to (expected) demand

Work Problems from End of Chapter

The implications of utilization QUAN6610 The implications of utilization A 85.7% utilization means: At any given moment, there is a 85.7% chance a server is busy serving a customer and a 1-0.857 = 14.3% chance the server is idle. At any given moment, on average 85.7% of the servers are busy serving customers and 1 – 0.857 = 14.3% are idle. If utilization < 100% then: The system is stable which means that the size of the queue does not keep growing over time. (Capacity is sufficient to serve all demand) If utilization >= 100% then: The system is unstable, which means that the size of the queue will continue to grow over time. Prepared by Jim Grayson, PhD

Utilization and system performance QUAN6610 Utilization and system performance Activity time = 1 m = 1 CVa = 1 CVp = 1 Time in queue increases dramatically as the utilization approaches 100% Prepared by Jim Grayson, PhD

Multiple Servers

Waiting Time Formula for Multiple, Parallel Resources Inventory in service Ip Inventory waiting Iq Inflow Outflow Flow rate Entry to system Begin Service Departure Time in queue Tq Service Time p Flow Time T=Tq+p Waiting Time Formula for Multiple (m) Servers

Managerial Responses to Variability: Pooling Independent Resources 2x(m=1) Waiting Time Tq 70.00 m=1 60.00 50.00 40.00 m=2 30.00 20.00 m=5 Pooled Resources (m=2) 10.00 m=10 0.00 60% 65% 70% 75% 80% 85% 90% 95% Utilization u Implications: + balanced utilization + Shorter waiting time (pooled safety capacity) - Change-overs / set-ups

Waiting Time Formula for Multiple, Parallel Resources Inventory in service Ip Inventory waiting Iq Inflow Outflow Flow rate Entry to system Begin Service Departure Time in queue Tq Service Time p Flow Time T=Tq+p Waiting Time Formula for Multiple (m) Servers

Customers waiting for service QUAN6610 A multi-server queue Arriving customers Departing customers Customers waiting for service Multiple servers Assumptions: All servers are equally skilled, i.e., they all take p time to process each customer. Each customer is served by only one server. Customers wait until their service is completed. There is sufficient capacity to serve all demand. a = average interarrival time Flow rate = 1 / a p = average activity time Capacity of each server = 1 / p m = number of servers Capacity = m x 1 / p Utilization = Flow rate / Capacity = (1 / a) / (m x 1 / p) = p / (a x m) Prepared by Jim Grayson, PhD

A multi-server queue – some data and analysis QUAN6610 A multi-server queue – some data and analysis Suppose: a = 35 seconds per customer Flow rate = 1 / 35 customers per second p = 120 seconds per customer Capacity of each server = 1 / 120 customers per second m = number of servers = 4 Then Capacity = m x 1 / p = 4 x 1 / 120 = 1 / 30 customers per second Utilization = Flow rate / Capacity = p / (a x m) = 120 / (35 x 4) = 85.7% Prepared by Jim Grayson, PhD

Time spent in the two stages of the system QUAN6610 Time spent in the two stages of the system Recall: p = Activity time m = number of servers Tq = Time in queue p = Time in service T = Tq + p = Flow time The above Time in queue equation works only for a stable system, i.e., a system with utilization less than 100% Prepared by Jim Grayson, PhD

What determines time in queue in a stable system? QUAN6610 What determines time in queue in a stable system? The capacity factor: Average processing time of the system = (p/m). Demand does not influence this factor. The variability factor: This is how variability influences time in queue – the more variability (holding average demand and capacity constant) the more time in queue. The utilization factor: Average demand influences this factor because utilization is the ratio of demand to capacity. Prepared by Jim Grayson, PhD

Evaluating Time in queue QUAN6610 Evaluating Time in queue Suppose: a = 35 seconds, p = 120 seconds, m = 4 Utilization = p / (a x m) = 85.7% CVa = 1, CVp = 1 So Flow time = 150 + 120 = 270 seconds. In other words, the average customer will spend 270 seconds in the system (waiting for service plus time in service) Prepared by Jim Grayson, PhD

How many customers are in the system? QUAN6610 How many customers are in the system? Use Little’s Law, I = R x T R = Flow Rate = (1/a) The flow rate through the system equals the demand rate because we are demand constrained (utilization is less than 100%) Iq = (1/a) x Tq = Tq / a Ip = (1/a) x p = p / a Note, time in service does not depend on the number of servers because when a customer is in service they are processed by only one server no matter how many servers are in the system. Iq = Inventory in queue Ip = Inventory in service I = Iq + Ip = Inventory in the system Prepared by Jim Grayson, PhD

Which system is more effective? QUAN6610 Which system is more effective? Across these three types of systems: Variability is the same: CVa = 1, CVp = 1 Total demand is the same: 1/35 customers per second. Activity time is the same: p = 120 Utilization is the same: p / a x m = 85.7% The probability a server is busy is the same = 0.857 Pooled system: One queue, four servers a = 35 m = 4 Partially pooled system: Two queues, two servers with each queue. For each of the 2 queues: a = 35 x 2 = 70 m = 2 Separate queue system: Four queues, one server with each queue. For each of the 4 queues: a = 35 x 4 = 140 m = 1 Prepared by Jim Grayson, PhD

Pooling can reduce Time in queue considerably QUAN6610 Pooling can reduce Time in queue considerably a = 35, p = 120, m = 4, CVa = 1, CVp = 1 Tq = 150 Flow Time = 270 Pooled system For each of the two queues: a = 70, p = 120, m = 2, CVa = 1, CVp = 1 Tq = 336 Flow Time = 456 Partially pooled system For each of the four queues: a = 140, p = 120, m = 1, CVa = 1, CVp = 1 Tq = 720 Flow Time = 840 Separate queue system Prepared by Jim Grayson, PhD

QUAN6610 Pooling reduces the number of customers waiting but not the number in service Iq = 4.3 Ip = 3.4 Iq = 4.3 Ip = 3.4 Pooled system Inventories for each queue within the system Partially pooled system Iq = 4.8 Ip = 1.7 Iq = 9.6 Ip = 3.4 ( 2 times the inventory in each queue ) Inventories for the total system Separate queue system Iq = 5.1 Ip = 0.86 Iq = 20.4 Ip = 3.4 ( 4 times the inventory in each queue ) Prepared by Jim Grayson, PhD

Why does pooling work? = A customer waiting = A customer in service QUAN6610 Why does pooling work? = A customer waiting = A customer in service Separate queue system Pooled system Both systems currently have 6 customers In the pooled system, all servers are busy and only 2 customers are waiting In the separate queue system, 2 servers are idle and 4 customers are waiting The separate queue system is inefficient because there can be customers waiting and idle servers at the same time. Prepared by Jim Grayson, PhD

Some quick service restaurants pool drive through ordering QUAN6610 Some quick service restaurants pool drive through ordering The person saying “Can I take your order?” may be hundreds (or even thousands) of miles away: Pooling the order taking process can improve time-in-queue while requiring less labor. It has been shown that queue length at the drive through influences demand – people don’t stop if the queue is long. However, this system incurs additional communication and software costs. Prepared by Jim Grayson, PhD

Limitations to pooling QUAN6610 Limitations to pooling Pooling may require workers to have a broader set of skills, which may require more training and higher wages: Imagine a call center that took orders for McDonalds and Wendys … now the order takers need to be experts in two menus. Suppose cardiac surgeons need to be skilled at kidney transplants as well. Pooling may disrupt the customer – server relationship: Patients like to see the same physician. Pooling may increase the time-in-queue for one customer class at the expense of another: Removing priority security screening for first-class passengers may decrease the average time-in-queue for all passengers but will likely increase it for first-class passengers. Prepared by Jim Grayson, PhD

What to Do With Seasonal Data Measure the true demand data Apply waiting model in each slice Slice the data by the hour (30min, 15min)

Service Levels in Waiting Systems Fraction of customers who have to wait x seconds or less 1 90% of calls had to wait 25 seconds or less 0.8 Waiting times for those customers who do not get served immediately 0.6 0.4 Fraction of customers who get served without waiting at all 0.2 50 100 150 200 Waiting time [seconds] Target Wait Time (TWT) Service Level = Probability{Waiting TimeTWT} Example: Deutsche Bundesbahn Call Center - now (2003): 30% of calls answered within 20 seconds - target: 80% of calls answered within 20 seconds Formulas: see Service Operations course / simulation

Managerial Responses to Variability: Priority Rules in Waiting Time Systems Service times: A: 9 minutes B: 10 minutes C: 4 minutes D: 8 minutes A C B 4 min. D 9 min. 19 min. C 12 min. A 23 min. D 21 min. B Total wait time: 9+19+23=51min Total wait time: 4+13+21=38 min Flow units are sequenced in the waiting area (triage step) Shortest Processing Time Rule - Minimizes average waiting time - Problem of having “true” processing times First-Come-First-Serve - easy to implement - perceived fairness Sequence based on importance - emergency cases - identifying profitable flow units

QUAN6610 Summary Even when a process is demand constrained (utilization is less than 100%), waiting time for service can be substantial due to variability in the arrival and/or service process. Waiting times tend to increase dramatically as the utilization of a process approaches 100%. Pooling multiple queues can reduce the time-in-queue with the same amount of labor (or use less labor to achieve the same time-in-queue). Prepared by Jim Grayson, PhD