Chapter 8 Understanding Requirements Moonzoo Kim KAIST

Slides:



Advertisements
Similar presentations
System Engineering based on Chapter 6 - Software Engineering: A Practitioner’s Approach, 6/e copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Advertisements

Analysis Concepts, Principles, and Modeling
Requirements Elicitation Techniques
7.1 A Bridge to Design & Construction
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 7 Requirements Engineering
1 R&D SDM 1 Software Project Management Requirements Analysis 2010 Theo Schouten.
Chapter 5 Understanding Requirements
Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 R&D SDM 1 Software Project Management Requirements Analysis 2009 Theo Schouten.
Requirements Analysis Concepts & Principles
Analysis Concepts and Principles
Analysis Concepts and Principle.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering Software Engineering: A Practitioner’s Approach, 6/e Chapter.
CMPS 435 Fall 08 These slides are designed to accompany Web Engineering: A Practitioner’s Approach (The McGraw-Hill Companies, Inc.) by Roger Pressman.
Chapter 4 Requirements Engineering
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Understanding Requirements. Requirements Engineering
1 REQUIREMENT ENGINEERING Chapter 7. 2 REQUIREMENT ENGINEERING Definition Establishing what the customer requires from a software system. OR It helps.
SWE311_Ch07 (071) Software & Software Engineering Slide 1 Chapter 7 Requirements Engineering.
1 COSC 4406 Software Engineering COSC 4406 Software Engineering Haibin Zhu, Ph.D. Dept. of Computer Science and mathematics, Nipissing University, 100.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Requirements Engineering CSE-305 Requirements Engineering Process Tasks Lecture-5.
Software Engineering Lecture No:13. Lecture # 7
Requirement Engineering. Review of Last Lecture Problems with requirement Requirement Engineering –Inception (Set of Questions) –Elicitation (Collaborative.
IS 466 ADVANCED TOPICS IN INFORMATION SYSTEMS LECTURER : NOUF ALMUJALLY 22 – 10 – 2011 College Of Computer Science and Information, Information Systems.
CS 3610: Software Engineering – Fall 2009 Dr. Hisham Haddad – CSIS Dept. Chapter 7 Requirements Engineering Elements of software requirement gathering.
Chapter 11 Analysis Concepts and Principles
Coming up: What is a requirement? 1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering Modified to include some Agile.
Chapter 7 Requirements Engineering
Chapter 9 요구사항 모델링: 시나리오 기반 방법론 Requirements Modeling: Scenario-Based Methods 임현승 강원대학교 Revised from the slides by Roger S. Pressman and Bruce R. Maxim.
Software Engineering Saeed Akhtar The University of Lahore Lecture 7 Originally shared for: mashhoood.webs.com.
Chapter 8 요구사항 이해 Understanding Requirements
Lecture-3.
Chapter 5 Understanding Requirements
Yarmouk University Department of Computer Information Systems CIS 499 Yarmouk University Department of Computer Information Systems CIS 499 Yarmouk University.
1 Chapter 11 Analysis Concepts and Principles. 2 Requirements Analysis.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7: Requirements Engineering Software Engineering: A Practitioner’s Approach, 6/e.
1 Chapter 5 Lecture 5: Understanding Requirements Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman Slides.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
By Germaine Cheung Hong Kong Computer Institute
1 Chapter 8 Building the Analysis Model (1) Analysis Concepts and Principles.
Requirement Engineering. Recap Elaboration Behavioral Modeling State Diagram Sequence Diagram Negotiation.
1 The Requirements Problem Chapter 1. 2 Standish Group Research Research paper at:  php (1994)
Requirement Engineering
28/08/2006SE6161 Prinsip dan Konsep Analisis Analysis Concepts and Principles.
Requirement engineering & Requirement tasks/Management. 1Prepared By:Jay A.Dave.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Requirements Engineering Determining and Defining the Requirements for the Project.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
CS 8532: Adv. Software Eng. – Spring 2009 Dr. Hisham Haddad Chapter 7 CS 8532: Advanced Software Engineering Dr. Hisham Haddad Class will start momentarily.
Software Requirements Definition - Jones The statement of needs by a user that triggers the development of a program or system - Jones 1994.
Chapter 8 Understanding Requirements
1 System Engineering. 2  Elements of a computer-based system 1.Software 2.Hardware 3.People 4.Database 5.Documentation 6.Procedures  Elements of a computer-based.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7: Requirements Engineering Software Engineering: A Practitioner’s Approach, 6/e.
Coming up: What is a requirement? 1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering Modified to include some Agile.
Requirements Elicitation Techniques
Chapter 8 Understanding Requirements
SafeHome Product.
Chapter 8 Understanding Requirements
Software Requirements analysis & specifications
Chapter 7 Requirements Engineering
Chapter 5 Understanding Requirements
Chapter 7 Requirements Engineering
Requirements Engineering Tasks
Chapter 5 Understanding Requirements
Chapter 5 Understanding Requirements.
Requirements Engineering
Presentation transcript:

Chapter 8 Understanding Requirements Moonzoo Kim KAIST

Requirements Engineering-I Inception—ask a set of questions that establish … basic understanding of the problem (what) the people who want a solution (who) the nature of the solution that is desired, and the effectiveness of preliminary communication and collaboration between the customer and the developer Elicitation—elicit requirements from all stakeholders Elaboration—create an analysis model that identifies data, function and behavioral requirements Negotiation—agree on a deliverable system that is realistic for developers and customers

Requirements Engineering-II Specification—can be any one (or more) of the following: A written document A set of models A collection of user scenarios (use-cases) A prototype Validation—a review mechanism that looks for Errors in content or interpretation Areas where clarification may be required (ambiguity) Missing information (incomplete requirement) Inconsistencies a major problem when large products or systems are engineered Unrealistic (unachievable) requirements. Requirements management

Inception Identify stakeholders Recognize multiple points of view “who else do you think I should talk to?” Recognize multiple points of view Work toward collaboration The first questions Who is behind the request for this work? Who will use the solution? What will be the economic benefit of a successful solution Is there another source for the solution that you need?

Eliciting Requirements meetings are conducted and attended by both software engineers and customers an agenda is suggested a "facilitator" (can be a customer, a developer, or an outsider) controls the meeting a "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin board, chat room or virtual forum) is used the goal is to identify the problem propose elements of the solution negotiate different approaches, and specify a preliminary set of solution requirements

Elicitation Work Products a set of usage scenarios that provide insight into the use of the system or product under different operating conditions. any prototypes developed to better define requirements. a statement of need and feasibility. a bounded statement of scope for the system or product. a list of customers, users, and other stakeholders who participated in requirements elicitation a description of the system’s technical environment. a list of requirements (preferably organized by function) and the domain constraints that apply to each.

Quality Function Deployment (QFD) Function deployment determines each function required of the system Information deployment identifies data objects and events Task deployment examines the behavior of the system Value analysis determines the relative priority of requirements during each of the three deployments Value should be one that are perceived by the customer

Non-Functional Requirements Non-Functional Requirement (NFR) – quality attribute, performance attribute, security attribute, or general system constraint. A two phase process is used to determine which NFR’s are compatible: The first phase is to create a matrix using each NFR as a column heading and the system SE guidelines a row labels The second phase is for the team to prioritize each NFR using a set of decision rules to decide which to implement by classifying each NFR and guideline pair as complementary overlapping conflicting independent

Conducting a Requirements Gathering Meeting (pg145) The scene: A meeting room. The first requirements gathering meeting is in progress. The players: Jamie Lazar, software team member; Vinod Raman, software team member; Ed Robbins, software team member; Doug Miller, software engineering manager; three members of marketing; a product engineering representative; a facilitator. The conversation: Facilitator (pointing at white board): So that's the current list of objects and services for the home security function. Marketing person: That about covers it from our point of view. Vinod: Didn't someone mention that they wanted all SafeHome functionality to be accessible via the Internet? That would include the home security function, no? Marketing person: Yes, that's right ... we'll have to add that functionality and the appropriate objects. 9 CS350 Intro. to SE Spring 2008

Facilitator: Does that also add some constraints? Jamie: It does, both technical and legal. Production rep: Meaning? Jamie: We better make sure an outsider can't hack into the system, disarm it, and rob the place or worse. Heavy liability on our part. Doug: Very true. Marketing: But we still need Internet connectivity. Just be sure to stop an outsider from getting in. Ed: That's easier said than done and.... Facilitator (interrupting): I don't want to debate this issue now. Let's note it as an action item and proceed. (Doug, serving as the recorder for the meeting, makes an appropriate note.) Facilitator: I have a feeling there's still more to consider here. (The group spends the next 45 minutes refining and ex­panding the details of the home security function.) 10 CS350 Intro. to SE Spring 2008

SafeHome Product

Use-Cases A collection of user scenarios that describe the thread of usage of a system Each scenario is described from the point-of-view of an “actor”—a person or device that interacts with the software in some way Each scenario answers the following questions: Who is the primary actor, the secondary actor (s)? What are the actor’s goals? What preconditions should exist before the story begins? What main tasks or functions are performed by the actor? What extensions might be considered as the story is described? What variations in the actor’s interaction are possible? What system information will the actor acquire, produce, or change? Will the actor have to inform the system about changes in the external environment? What information does the actor desire from the system? Does the actor wish to be informed about unexpected changes?

Example of Use Case for SafeHome Use-case: InitiateMonitoring Primary actor: Homeowner Goal in context: To set the system to monitor sensors when the homeowner leaves the house or remains inside Preconditions: System has been programmed for a password and to recognize various sensors Trigger: The homeowner decides to “set” the system, i.e., to turn on the alarm functions Scenario: Homeowner: observes control panel Homeowner:enters password Homeowner: selects “stay” or “away” Homeowner: observes red alarm light to indicate that SafeHome has been armed Exceptions: 1a. Control panel is not ready: homeowner checks all sensors to determine which are open; closes them 2a. Password is incorrect Priority: Essential, must be implemented When available: first increment Frequency of use: Many times per day Channel to actor: Via control panel interface Secondary actors: Support technician Channels to secondary actors: support technician: phone line Open issues: Do we enforce time limit for password entering?

Use-Case Diagram

Building the Analysis Model Elements of the analysis model Scenario-based elements Functional—processing narratives for software functions Use-case—descriptions of the interaction between an “actor” and the system Class-based elements Implied by scenarios Behavioral elements State diagram Flow-oriented elements Data flow diagram

Eliciting Requirements

Class Diagram From the SafeHome system …

State Diagram

Negotiating Requirements Identify the key stakeholders These are the people who will be involved in the negotiation Determine each of the stakeholders “win conditions” Win conditions are not always obvious Negotiate Work toward a set of requirements that lead to “win-win”

Validating Requirements-I Is each requirement consistent with the overall objective for the system/product? Have all requirements been specified at the proper level of abstraction? That is, do some requirements provide a level of technical detail that is inappropriate at this stage? Is the requirement really necessary or does it represent an add-on feature that may not be essential to the objective of the system? Is each requirement bounded and unambiguous? Does each requirement have attribution? That is, is a source (generally, a specific individual) noted for each requirement?

Validating Requirements-II Do any requirements conflict with other requirements? Is each requirement achievable in the technical environment that will house the system or product? Is each requirement testable, once implemented? Does the requirements model properly reflect the information, function and behavior of the system to be built. Has the requirements model been “partitioned” in a way that exposes progressively more detailed information about the system.

Specification Guidelines use a layered format that provides increasing detail as the "layers" deepen use consistent graphical notation and apply textual terms consistently (stay away from aliases) be sure to define all acronyms be sure to include a table of contents; ideally, include an index and/or a glossary write in a simple, unambiguous style (see "editing suggestions" on the following pages) always put yourself in the reader's position, "Would I be able to understand this if I wasn't intimately familiar with the system?"

Specification Guidelines

Specification Guidelines