Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.

Slides:



Advertisements
Similar presentations
DNA Technology and Genomics
Advertisements

DNA Technology & Gene Mapping Biotechnology has led to many advances in science and medicine including the creation of DNA clones via recombinant clones,
Chapter 20: DNA Technology and Genomics
How to characterize a single piece of DNA - Isolate a small fragment of DNA - Insert DNA into plasmid (or phage vector) -Transform recombinant DNA molecule.
Ch 12. Lac Operon 0Kh4&feature=relatedhttp:// 0Kh4&feature=related
Ch 12. Researchers can insert desired genes into plasmids, creating recombinant DNA and insert those plasmids into bacteria Bacterium Bacterial chromosome.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
Chapter 20: Biotechnology Ms. Whipple Brethren Christian High School.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
DNA TECHNOLOGY DNA recombination or genetic engineering is the direct manipulation of genes for practical purposes.
DNA Technology and Genomics
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
DNA Technology.
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
CHAPTER 20 BIOTECHNOLOGY: PART I. BIOTECHNOLOGY Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology.
DNA Technology Ch. 20 Figure 20.1 An overview of how bacterial plasmids are used to clone genes.
Gene Technology Chapter 16.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 20: DNA Technology and Genomics.
GENE TECHNOLOGY Chapter 8.
1 Genetics Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology.
What are the Techniques of Biotechnology ? Restriction Endonucleases: enzymes that cut DNA at specific codes (nucleotide sequences) –Can buy from suppliers:
AP Biology Biotechnology Part 3. Bacterial Cloning Process Bacterium Bacterial chromosome Plasmid Gene inserted into plasmid Cell containing gene of interest.
DNA Technology.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Items for tomorrow and beyond: 1) Study/read captions for all figures within Chapter 20 2) Read Section 20.5 (applications of biotechnology) on pp
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Biotechnology.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Restriction Fragments and Mapping Restriction Fragment Analysis – System used to compare the genes and DNA sequences between individuals in a population.
DNA TECHNOLOGY AND GENOMICS CHAPTER 20 P
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
12.10 Gel electrophoresis sorts DNA molecules by size
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: The DNA Toolbox In recombinant DNA, nucleotide sequences from.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Chapter 20: DNA Technology and Genomics - Lots of different techniques - Many used in combination with each other - Uses information from every chapter.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Genomics Part 1. Human Genome Project  G oal is to identify the DNA sequence of every gene in humans Genome  all the DNA in one cell of an organism.
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
Phage DNA Donor cell Recipient cell A+A+ B+B+ A+A+ B+B+ A+A+ A+A+ B–B– A–A– B–B– A+A+ Recombinant cell Crossing over
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 20 DNA Technology and Genomics.
Gene Cloning & Creating DNA Libraries. Клонирование генов Что означает термин «клонирование»? Как происходит клонирование генов? Чем это отличается от.
DNA Technology & Genomics CHAPTER 20. Restriction Enzymes enzymes that cut DNA at specific locations (restriction sites) yielding restriction fragments.
Restriction Fragments and Mapping
DNA Technology and Genomics
Fig Figure 20.1 How can this array of spots be used to compare normal and cancerous tissues?
DNA Technologies (Introduction)
Figure 20.2 Overview of gene cloning
Overview: Understanding and Manipulating Genomes
Chapter 20: DNA Technology and Genomics
Biotechnology CHAPTER 20.
DNA Technology and Genomics
and PowerPoint “DNA Technology,” from
Chapter 20 – DNA Technology and Genomics
Chapter 20 Biotechnology.
Chapter 14 Bioinformatics—the study of a genome
Screening a Library for Clones Carrying a Gene of Interest
DNA Technology and Genomics
DNA Technology and Genomics
DNA Technology and Genomics
DNA Technology and Genomics
Chapter 20: DNA Technology and Genomics
GENE TECHNOLOGY Chapter 13.
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and Jane Reece Chapter 20 DNA Technology and Genomics

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.1 DNA microarray that reveals expression levels of 2,400 human genes (enlarged photo)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.2 Overview of gene cloning with a bacterial plasmid, showing various uses of cloned genes Bacterium Bacterial chromosome Plasmid Cell containing gene of interest Gene inserted into plasmid Recombinant DNA (plasmid) Plasmid put into bacterial cell Gene of interest DNA of chromosome Recombinate bacterium Host cell grown in culture, to form a clone of cells containing the “cloned” gene of interest Protein harvested Basic research on protein Basic research and various applications Gene of interest Copies of gene Basic research on gene Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hormone treats stunted growth Protein expressed by gene of interest

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.3 Using a restriction enzyme and DNA ligase to make recombinant DNA Restriction site DNA G A A T T C C T T A A G Restriction enzyme cuts the sugar-phosphate backbones at each arrow DNA fragment from another source is added. Base pairing of sticky ends produces various combinations. DNA ligase seals the strands. Sticky end Fragment from different DNA molecule cut by the same restriction enzyme One possible combination Recombinant DNA molecule G C T T A A A A T T C G C T T A A G G G G A A T TCA A T T C C T T A A G C T T A A G 1 2 3

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.4 Cloning a human gene in a bacterial plasmid (layer 1) Recombinant DNA plasmids Sticky ends Human DNA Fragments Human cell Gene of interest Bacterial cell amp R gene (ampicillin resistance) Bacterial plasmid Restriction site lacZ gene (lactose breakdown) 1 Isolate plasmid DNA and human DNA. 2 Cut both DNA samples with the same restriction enzyme, one that makes a single cut within the lacZ gene and many cuts within the human DNA. 3 Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.4 Cloning a human gene in a bacterial plasmid (layer 2) Recombinant bacteria Recombinant DNA plasmids Sticky ends Human DNA Fragments Human cell Gene of interest Bacterial cell amp R gene (ampicillin resistance) Bacterial plasmid Restriction site lacZ gene (lactose breakdown) 1 Isolate plasmid DNA and human DNA. 2 Cut both DNA samples with the same restriction enzyme, one that makes a single cut within the lacZ gene and many cuts within the human DNA. 3 Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. 4 Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.4 Cloning a human gene in a bacterial plasmid (layer 3) Colony carrying non- recombinant plasmid with intact lacZ gene Bacterial clone Colony carrying re- combinant plasmid with disrupted lacZ gene Recombinant bacteria Recombinant DNA plasmids Sticky ends Human DNA Fragments Human cell Gene of interest Bacterial cell amp R gene (ampicillin resistance) Bacterial plasmid Restriction site lacZ gene (lactose breakdown) 1 Isolate plasmid DNA and human DNA. 2 Cut both DNA samples with the same restriction enzyme, one that makes a single cut within the lacZ gene and many cuts within the human DNA. 3 Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. 4 Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene. 5 Plate the bacteria on agar containing ampicillin and X-gal. Incubate until colonies grow.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.5 Nucleic acid probe hybridization APPLICATION Hybridization with a complementary nucleic acid probe detects a specific DNA within a mixture of DNA molecules. In this example, a collection of bacterial clones (colonies) are screened to identify those carrying a plasmid with a gene of interest. TECHNIQUE Cells from each colony known to contain recombinant plasmids (white colonies in Figure 20.4, step 5) are transferred to separate locations on a new agar plate and allowed to grow into visible colonies. This collection of bacterial colonies is the master plate. RESULT Colonies of cells containing the gene of interest have been identified by nucleic acid hybridization. Cells from colonies tagged with the probe can be grown in large tanks of liquid growth medium. Large amounts of the DNA containing the gene of interest can be isolated from these cultures. By using probes with different nucleotide sequences, the collection of bacterial clones can be screened for different genes. Colonies containing gene of interest Filter Master plate Solution containing probe Filter lifted and flipped over Radioactive single-stranded DNA Hybridization on filter Single-stranded DNA from cell Probe DNA Gene of interest Film Master plate A special filter paper is pressed against the master plate, transferring cells to the bottom side of the filter. The filter is treated to break open the cells and denature their DNA; the resulting single- stranded DNA molecules are treated so that they stick to the filter. The filter is laid under photographic film, allowing any radioactive areas to expose the film (autoradiography). After the developed film is flipped over, the reference marks on the film and master plate are aligned to locate colonies carrying the gene of interest

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.6 Genomic libraries Foreign genome cut up with restriction enzyme Recombinant plasmids Recombinant phage DNA Phage clones (b) Phage library (a) Plasmid library or Bacterial clones

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.7 The polymerase chain reaction (PCR) Target sequence Genomic DNA Denaturation: Heat briefly to separate DNA strands Annealing: Cool to allow primers to hydrogen-bond. Extension: DNA polymerase adds nucleotides to the 3 end of each primer Cycle 1 yields 2 molecules Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence Primers New nucleo- tides APPLICATION With PCR, any specific segment—the target sequence—within a DNA sample can be copied many times (amplified) completely in vitro. TECHNIQUE The starting materials for PCR are double- stranded DNA containing the target nucleotide sequence to be copied, a heat-resistant DNA polymerase, all four nucleotides, and two short, single-stranded DNA molecules that serve as primers. One primer is complementary to one strand at one end of the target sequence; the second is complementary to the other strand at the other end of the sequence. RESULTS During each PCR cycle, the target DNA sequence is doubled. By the end of the third cycle, one-fourth of the molecules correspond exactly to the target sequence, with both strands of the correct length (see white boxes above). After 20 or so cycles, the target sequence molecules outnumber all others by a billionfold or more.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.8 Gel Electrophoresis APPLICATION 1 Each sample, a mixture of DNA molecules, is placed in a separate well near one end of a thin slab of gel. The gel is supported by glass plates, bathed in an aqueous solution, and has electrodes attached to each end. 2 When the current is turned on, the negatively charged DNA molecules move toward the positive electrode, with shorter molecules moving faster than longer ones. Bands are shown here in blue, but on an actual gel, DNA bands are not visible until a DNA-binding dye is added. The shortest molecules, having traveled farthest, end up in bands at the bottom of the gel. Cathode Power source Gel Glass plates Anode Mixture of DNA molecules of differ- ent sizes Longer molecules Shorter molecules TECHNIQUE Gel electrophoresis separates macromolecules on the basis of their rate of movement through a gel in an electric field. How far a DNA molecule travels while the current is on is inversely proportional to its length. A mixture of DNA molecules, usually fragments produced by restriction enzyme digestion, is separated into “bands”; each band contains thousands of molecules of the same length. RESULTS After the current is turned off, a DNA-binding dye is added. This dye fluoresces pink in ultraviolet light, revealing the separated bands to which it binds. In this actual gel, the pink bands correspond to DNA fragments of different lengths separated by electrophoresis. If all the samples were initially cut with the same restriction enzyme, then the different band patterns indicate that they came from different sources. Gel electrophoresis is used for separating nucleic acids or proteins that differ in size, electrical charge, or other physical properties. DNA molecules are separated by gel electrophoresis in restriction fragment analysis of both cloned genes (see Figure 20.9) and genomic DNA (see Figure 20.10).

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 20.9 Using restriction fragment analysis to distinguish the normal and sickle-cell alleles of the  -globin gene Normal  -globin allele Sickle-cell mutant  -globin allele 175 bp 201 bpLarge fragment DdeI Ddel 376 bp Large fragment DdeI restriction sites in normal and sickle-cell alleles of  -globin gene. Electrophoresis of restriction fragments from normal and sickle-cell alleles. Normal allele Sickle-cell allele Large fragment 201 bp 175 bp 376 bp (a) (b)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Southern blotting of DNA fragments APPLICATION Researchers can detect specific nucleotide sequences within a DNA sample with this method. In particular, Southern blotting is useful for comparing the restriction fragments produced from different samples of genomic DNA. TECHNIQUE In this example, we compare genomic DNA samples from three individuals: a homozygote for the normal  -globin allele (I), a homozygote for the mutant sickle-cell allele (II), and a heterozygote (III). DNA + restriction enzyme Restriction fragments III III I Normal  -globin allele II Sickle-cell allele III Heterozygote Preparation of restriction fragments. Gel electrophoresis. Blotting. Gel Sponge Alkaline solution Nitrocellulose paper (blot) Heavy weight Paper towels 1 2 3

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings RESULTS Because the band patterns for the three samples are clearly different, this method can be used to identify heterozygous carriers of the sickle-cell allele (III), as well as those with the disease, who have two mutant alleles (II), and unaffected individuals, who have two normal alleles (I). The band patterns for samples I and II resemble those observed for the purified normal and mutant alleles, respectively, seen in Figure 20.9b. The band pattern for the sample from the heterozygote (III) is a combination of the patterns for the two homozygotes (I and II). Radioactively labeled probe for  -globin gene is added to solution in a plastic bag Probe hydrogen- bonds to fragments containing normal or mutant  -globin Fragment from sickle-cell  -globin allele Fragment from normal  -globin allele Paper blot Film over paper blot Hybridization with radioactive probe.Autoradiography. IIIIII IIIIII 12

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Three-stage approach to mapping an entire genome Cytogenetic map Chromosome banding pattern and location of specific genes by fluorescence in situ hybridization (FISH) Genetic (linkage) mapping Ordering of genetic markers such as RFLPs, simple sequence DNA, and other polymorphisms (about 200 per chromosome) Physical mapping Ordering of large over- lapping fragments cloned in YAC and BAC vectors, followed by ordering of smaller fragments cloned in phage and plasmid vectors DNA sequencing Determination of nucleotide sequence of each small fragment and assembly of the partial sequences into the com- plete genome sequence Chromosome bands Genes located by FISH Genetic markers Overlapping fragments …GACTTCATCGGTATCGAACT… 1 2 3

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Dideoxy chain-termination method for sequencing DNA DNA (template strand) Primer Deoxyribonucleotides Dideoxyribonucleotides (fluorescently tagged) TGTTTGTT 3 5 DNA polymerase CTGACTTCGACAACTGACTTCGACAA PPPPPP dATP dCTP dTTP dGTP G OH ddATP ddCTP ddTTP ddGTP G H CTGACTTCGACAACTGACTTCGACAA ddC T G T ddG C T G T ddA G C T G T ddA A G C T G T ddG A G C T G T ddT G A G C T G T ddC T G A G C T G T ddA C T G A G C T G T ddG A C T G A G C T G T 3 DNA (template strand) Labeled strands Direction of movement of strands LaserDetector APPLICATION The sequence of nucleotides in any cloned DNA fragment up to about 800 base pairs in length can be determined rapidly with specialized machines that carry out sequencing reactions and separate the labeled reaction products by length. TECHNIQUE This method synthesizes a nested set of DNA strands complementary to the original DNA fragment. Each strand starts with the same primer and ends with a dideoxyribonucleotide (ddNTP), a modified nucleotide. Incorporation of a ddNTP terminates a growing DNA strand because it lacks a 3—OH group, the site for attachment of the next nucleotide (see Figure 16.12). In the set of strands synthesized, each nucleotide position along the original sequence is represented by strands ending at that point with the complementary ddNT. Because each type of ddNTP is tagged with a distinct fluorescent label, the identity of the ending nucleotides of the new strands, and ultimately the entire original sequence, can be determined. RESULTS The color of the fluorescent tag on each strand indicates the identity of the nucleotide at its end. The results can be printed out as a spectrogram, and the sequence, which is complementary to the template strand, can then be read from bottom to top. (Notice that the sequence here begins after the primer.) GACTGAAGCGACTGAAGC

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Whole-genome shotgun approach to sequencing Cut the DNA from many copies of an entire chromosome into overlapping frag- ments short enough for sequencing. Clone the fragments in plasmid or phage vectors Sequence each fragment Order the sequences into one overall sequence with computer software. ACGATACTGGT CGCCATCAGTACGATACTGGT AGTCCGCTATACGA …ATCGCCATCAGTCCGCTATACGATACTGGTCAA…

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Table 20.1 Genome Sizes and Estimated Numbers of Genes*

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Research Method DNA microarray assay of gene expression levels APPLICATION TECHNIQUE Tissue sample mRNA molecules Labeled cDNA molecules (single strands) DNA microarray Size of an actual DNA microarray with all the genes of yeast (6,400 spots) Isolate mRNA. 1 With this method, researchers can test thousands of genes simultaneously to determine which ones are expressed in a particular tissue, under different environmental conditions in various disease states, or at different developmental stages. They can also look for coordinated gene expression. Make cDNA by reverse transcription, using fluorescently labeled nucleotides. 2 Apply the cDNA mixture to a microarray, a microscope slide on which copies of single- stranded DNA fragments from the organism’s genes are fixed, a different gene in each spot. The cDNA hybridizes with any complementary DNA on the microarray. 3 Rinse off excess cDNA; scan microarray for fluorescence. Each fluorescent spot (yellow) represents a gene expressed in the tissue sample. 4 RESULT The intensity of fluorescence at each spot is a measure of the expression of the gene represented by that spot in the tissue sample. Commonly, two different samples are tested together by labeling the cDNAs prepared from each sample with a differently colored fluorescence label. The resulting color at a spot reveals the relative levels of expression of a particular gene in the two samples, which may be from different tissues or the same tissue under different conditions.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure RFLPs as markers for disease-causing alleles RFLP marker DNA Restriction sites Disease-causing allele Normal allele

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Gene therapy using a retroviral vector Insert RNA version of normal allele into retrovirus. Let retrovirus infect bone marrow cells that have been removed from the patient and cultured. Viral DNA carrying the normal allele inserts into chromosome. Inject engineered cells into patient. Bone marrow cell from patient Retrovirus capsid Viral RNA Cloned gene (normal allele, absent from patient’s cells)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure DNA fingerprints from a murder case Defendant’s blood (D) Blood from defendant’s clothes Victim’s blood (V) D Jeans shirt V 4  g 8  g

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure “Pharm” animals

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Using the Ti plasmid to produce transgenic plants APPLICATION Genes conferring useful traits, such as pest resistance, herbicide resistance, delayed ripening, and increased nutritional value, can be transferred from one plant variety or species to another using the Ti plasmid as a vector. TECHNIQUE Transformed cells carrying the transgene of interest can regenerate complete plants that exhibit the new trait conferred by the transgene. RESULT 1 The Ti plasmid is isolated from the bacterium Agrobacterium tumefaciens. The segment of the plasmid that integrates into the genome of host cells is called T DNA. 2 Isolated plasmids and foreign DNA containing a gene of interest are incubated with a restriction enzyme that cuts in the middle of T DNA. After base pairing occurs between the sticky ends of the plasmids and foreign DNA fragments, DNA ligase is added. Some of the resulting stable recombinant plasmids contain the gene of interest. 3 Recombinant plasmids can be introduced into cultured plant cells by electroporation. Or plasmids can be returned to Agrobacterium, which is then applied as a liquid suspension to the leaves of susceptible plants, infecting them. Once a plasmid is taken into a plant cell, its T DNA integrates into the cell‘s chromosomal DNA. Agrobacterium tumefaciens Ti plasmid Site where restriction enzyme cuts T DNA DNA with the gene of interest Recombinant Ti plasmid Plant with new trait