GNO and the pp - Neutrino Challenge  T.Kirsten/GNO Till A. Kirsten Max-Planck-Institut für Kernphysik, Heidelberg for the GNO Collaboration NDM03 Nara/Japan.

Slides:



Advertisements
Similar presentations
E. Bellotti for the GNO Collaboration
Advertisements

Riunione Settembre 2007 Gruppo 2 Inizio presa dati 2007: Auger, Borexino, Agile, Pamela Rivelatore on 2008: Gerda, Icarus, Opera,Warp, Glast, Antares,
Solar neutrinos Recent results Daniel Vignaud (APC Paris) Neutrinos at the forefront of particle physics and astrophysics 23 October 2012.
Neutrino oscillations/mixing
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Recent results from Borexino
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Source Neutrino Experiments
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrinos from the primary proton- proton fusion process in the Sun pp neutrinos constitute nearly the entirety of solar neutrino flux Secondary neutrinos.
O Reactor antineutrinos in the world V. Chubakov 1, F. Mantovani 1, B. Ricci 1, J. Esposito 2, L. Ludhova 3 and S. Zavatarelli 4 1 Dip. di Fisica, Università.
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
Aldo IanniNNN05 April 8, Status and future prospects of Gran Sasso Aldo Ianni INFN Gran Sasso Laboratory NNN05 Aussois, April 7-9.
Results from Solar Neutrino Radiochemical Experiments (with main emphasis on Gallium) Neutrino 2004, Paris June 2004 Carla Maria Cattadori INFN Milano.
Lino Miramonti Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare 1 Invited Seminar at Universidad Mayor de San Andrés (UMSA) La.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
1 Retrospect of GALLEX / GNO Till Kirsten Max-Planck-Institut für Kernphysik Heidelberg / Germany 1Retrospect 2Recent update 3Why did we stop?
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
The Standard Solar Model and Experiments Predictions versus experiments Uncertainties in predictions Challenges and open questions BP00: astro-ph/
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
Kopylov A.V. Erice School/Workshop 2009 on Neutrinos in Cosmology, in Astro, in Particle and in Nuclear Physics in Erice/Trapani/Sicily/Italy on September.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
The Troublesome Kid An introductory course on neutrino physics (III) J.J. Gómez-Cadenas IFIC-Valencia Summer Student School CERN, July,2006.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrino Results from SNO
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Center for Neutrino Physics Source Neutrino Experiments Jonathan Link Center for Neutrino Physics Virginia Tech NuFact 2016.
Neutrino oscillations with radioactive sources and large detectors Wladyslaw H. Trzaska on behalf of: Yu.N. Novikov, T. Enqvist, A.N. Erykalov, F. v.Feilitzsch,
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
The first year of Borexino data Davide Franco on behalf of the Borexino Collaboration Milano University & INFN Heavy Quarks and Leptons June 5-9, 2008.
51 Cr Source Experiments for Sterile Neutrinos Jonathan Link Virginia Tech Sterile Neutrinos at the Crossroads 9/27/2011.
Neutrino Physics II Hitoshi Murayama University of Pisa February 25, 2003.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar Neutrinos on the beginning of 2017
Physics with the ICARUS T1800 detector
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Solar Neutrino Problem
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
“Solar” Neutrino Oscillations (Dm2, q12)
Signal and Background in LENS
Solar neutrinos: form their production to their detection
Impact of neutrino interaction uncertainties in T2K
Davide Franco for the Borexino Collaboration Milano University & INFN
Some Nuclear Physics with Solar Neutrinos
Presentation transcript:

GNO and the pp - Neutrino Challenge  T.Kirsten/GNO Till A. Kirsten Max-Planck-Institut für Kernphysik, Heidelberg for the GNO Collaboration NDM03 Nara/Japan June 9-14, 2003 a

Solar Neutrino Energy Spectrum

Purpose: detection of low energy solar neutrinos 71 Ga( e,e) 71 Ge (E thr = 233 keV) Basic interaction: EC,  = days  signal composition: Technique: Expected signal (SSM):  9 71 Ge counts detected per extraction Radiochemical Target: 103 tons of GaCl 3 acidic solution containing 30 tons of natural gallium Chemical extraction of 71 Ge every 3-4 weeks Detection of 71 Ge decay with gas proportional counters Tot: SNU 72 SNU 35 SNU 10 SNU 13 SNU 8 B 10% CNO 8% 7 Be 27% pp+pep 55% More details can be found on the webpage GNO - Gallium Neutrino Observatory

 Dip. Di Fisica dell’Università di Milano “La Bicocca” e INFN sez. Milano  INFN Laboratori Nazionali del Gran Sasso  Dip. Di Fisica dell’Università di Roma “Tor Vergata” e INFN sez. Roma II  Dip. Di Ingegneria Chimica e dei Materiali Università dell’Aquila  Max Planck Institut fur Kernphysik – Heidelberg  Physik Dep. E15 – Technische Universitaet – Muenchen GNO Collaboration

May 1991 – May 1992 Construction of the detector GALLEX I data taking 15 Solar runs, 5 Blanks PL B285 (1992) 376 PL B285 (1992) 390 Jun 1994 – Oct st 51 Cr source experiment PL B342 (1995) 440 Oct 1995 – Feb nd source 51 Cr experiment PL B420 (1998) 114 Feb 1997 – Apr 1997Test of the detector with 71 As PL B436 (1998) 158 Apr 1998 – Now Start of GNO data taking 83.4 ± 19 SNU GALLEX Final Result 1594 days – 65 runs: 77.5 ± 7.7 SNU GALLEX Feb. 1997End of Solar Data Taking PL B447 (1999) 127

Significance of Deficit in Time

Neutrino Source Exposure

Source results

Arsenic Tests Repeated tests under variable respectively purposely unfavorable conditions with respect to: method and magnitude of carrier addition Mixing-and extraction conditions standing time to exclude witholdings (classical or ‘hot-atom’-effects) Method: Triple-batch comparison:  As atoms in: Tank sample External sample Calibration sample (  -spectrometry) Result: Recovery 99+ %

GNO – Results completed52 solar runs1547 days still counting 7 solar runs 200 days blanks GNO 65.2 ± 6.4 ± 3.0 SNU (L 70. ± 10. K 62. ± 8.) GALLEX77.5 ± SNU GALLEX+GNO 70.8 ± 4.5 ± 3.8 SNU

GALLEX - GNO Davis plot GALLEX 65 solar runs GNO 52 solar runs

GALLEX +GNO Seasonal variations Winter-Summer (statistical error only): GNO only (52 SRs): Winter (26 SR): SNU Summer (26 SR): SNU W-S: -8 ± 16 SNU GNO + Gallex (117 SRs): Winter (60 SR): SNU Summer (57 SR): SNU W-S: -5 ± 12 SNU

Improvements ItemGallexGNO Target size0.8% Chemical yield2.0% Counting efficiency (active volume determ.) 4.0%2.3% Pulse shape cuts2.0%1.3% * Event selection (others)0.3%0.6% Side reactions1.2 SNU Rn-cut inefficiency1.2 SNU0.8 SNU 68 Ge contamination +1.8 SNU -2.6 SNU - * Neural network analysis

Why sub-MeV Neutrinos? 1.Solar Physics 98 % of all solar neutrinos are sub-MeV (  7 ~ 7 %,  pp ~ 91 % ) The pp- neutrino flux is coupled to the solar luminosity. It is a fundamental astrophysical parameter that should definitely be measured, as precisely as possible. Stringent limitations (or observation) of departures from the standard solar model are obtained if the flux of pp neutrinos could be deduced.

2. Neutrino Physics (a) Below 1 MeV, the vacuum oscillation domain takes over from the matter oscillation domain at >1 MeV. Also there could be hidden effects only at < 1MeV (e.g., sterile admix- tures?) (b) Narrow down on tang2θ 12. To obtain Δ  15%, the pp-flux must be determined to  3 %

Depression Factor vs. Energy

Ga SNU contours in the LMA region Holanda + Smirnov PRD 66(2002)113005

How? The best promise is with low threshold real time experiments like  -e) scattering or (  e- γ) (e.g. Xe) e.g. In-Lens Yet: When ??? 7 Be : soon (Borexino, Kamland?) pp : > 4 years (at least) Meanwhile : pp = GNO(pp+ 7 Be) minus BOREXINO ( 7 Be)!

An important Asset: GNO is a running experiment. Continuation and improvements are (relatively) low cost and effort. Yet: How precisely can we get before the advent of real time sub-MeV data ?

Outset on which we must improve (see Bahcall and Pena-Garay, hep-ph ) pp-flux: (1.01  0.02) x BP00 SSM (1  ) (with luminosity constraint) 7 Be-flux: ( ) x BP00 SSM (1  ) tang 2 θ 12 = = (LMA: Δm 2 = ( ) x eV 2 ; no hope to improve on this from GNO/Borexino) f Ga,cc = 0.55  0.03 (1  )

CC / NC Response

Determination of the pp-neutrino flux from GNO and Borexino

Deduction of the pp-flux

E (MeV) P ( e  e ) Survival probabilities P pp = % P pep = % P 7 = 0, % P 8 = % P CNO = % C. Cattadori, N. Ferrari Survival probabilities

Capture cross sections type  Err% TransitionsSignal/SSM % Errors from  cm2 %GS 1,2 >2 (with MSW LMA) GS 1,2 >2 pp pep Be B N O TOT Capture cross sections

Future Plans in GNO

Future Neutrino Source Exposures

Source Feasibility and Status An intense feasibility study, including test irradiations with actual GALLEX enriched chromium, revealed that the RIAR reactor research institute at Dimitrovgrad (Russia) can produce sources up to 6.5 MegaCurie with the available material. The immediate project is a  3 MCi source for GNO (next major experimental step)

Quotation of J. Bahcall „Simple neutrino scenarios fit well the existing data, which – with the exception of the chlorine and gallium radiochemical experiments – all detect only solar neutrinos with energies above 5 MeV. Perhaps these higher energy data have not yet revealed the full richness of the weak interaction phenomena.” Nucl.Phys. Proc. Suppl. B118 (2003) 86