How Massive are the First Stars? Statistical Study of the primordial star formation  M popIII ALMA 北海道大学 / Jan. 26-28, 2013 ○ Shingo Hirano.

Slides:



Advertisements
Similar presentations
From protostellar cores to disk galaxies - Zurich - 09/2007 S.Walch, A.Burkert, T.Naab Munich University Observatory S.Walch, A.Burkert, T.Naab Munich.
Advertisements

Star Birth How do stars form? What is the maximum mass of a new star? What is the minimum mass of a new star?
John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation.
The Birth of Stars Chapter Twenty. Interstellar gas and dust pervade the Galaxy Interstellar gas and dust, which make up the interstellar medium, are.
GALAXIES IN DIFFERENT ENVIRONMENTS: VOIDS TO CLUSTERS:  Simulations will require to model full physics:  Cooling, heating, star formation feedbacks…
Primordial Supernovae and the Assembly of the First Galaxies Daniel Whalen Bob Van Veelen X-2, LANL Utrecht Michael Norman Brian O’Shea UCSD T-6, LANL.
Solar System. What is the Solar System? Consists of a star, (like the sun) and all of the planets, moons and other bodies that travel around it. Planets.
The Effects of X-rays on Star Formation and Black Hole Growth in Young Galaxies Ayçin Aykutalp (Kapteyn), John Wise (Georgia), Rowin Meijerink (Kapteyn/Leiden)
Pop III IMF Michael L. Norman Laboratory for Computational Astrophysics UC San Diego (with thanks to Andrea Ferrara & Mario Livio)
Primordial Star Formation: Constraints on the IMF from Protostellar Feedback Jonathan C. Tan ETH Zurich Christopher F. McKee UC Berkeley Eric G. Blackman.
Roger A. Freedman • William J. Kaufmann III
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
Star Formation Astronomy 315 Professor Lee Carkner Lecture 12.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Formation of the First Stars
Star Formation Processes in Stellar Formation Sequence of Events Role of Mass in Stellar Formation Observational Evidence New Theories.
2013/01/26 ALMA 北海道大学. Disk stability in low-metallicity star formation ~ 低金属量星形成における降着円盤の安定性 ~ K.Tanaka, K.Omukai (Kyoto-U) Primordial.
Star Formation. Introduction Star-Forming Regions The Formation of Stars Like the Sun Stars of Other Masses Observations of Brown Dwarfs Observations.
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Formation of the First Stars Under Protostellar Feedback Athena Stacy First Stars IV 2012.
Astronomy – Stellar Evolution What is a Star? Stars are hot bodies of glowing gas that start their life in Nebulae.(1) 2.
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Nathan Mayne Colour-Magnitude Diagrams (CMDs). Nathan Mayne Stellar Evolution (simple picture) Three main phases: Pre-main-sequence (pre-MS) Main-sequence.
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
After decoupling, overdense regions collapse IF Collapse timefor all sizes. More small ripples than large waves. --> Universe dominated by globular clusters.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Non-isothermal Gravoturbulent Fragmentation: Effects on the IMF A.-K. Jappsen¹, R.S. Klessen¹, R.B. Larson²,Y. Li 3, M.-M. Mac Low 3 ¹Astrophysikalisches.
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Lecture 15 main sequence evolution. Recall: Initial cloud collapse A collapsing molecular cloud starts off simply:  In free-fall, assuming the pressure.
Ch Stellar Evolution. Nebula—a cloud of dust and gas. 70% Hydrogen, 28% Helium, 2% heavier elements. Gravity pulls the nebula together; it spins.
Seed BH formation via direct collapse
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Quasars at the Cosmic Dawn Yuexing Li Penn State University Main Collaborators: Lars Hernquist (Harvard) Volker Springel (Heidelberg) Tiziana DiMatteo.
The Growth of the Stellar Seeds of Supermassive Black Holes Jarrett Johnson (LANL, MPE) with Bhaskar Agarwal (MPE), Claudio Dalla Vecchia (MPE), Fabrice.
Star Formation Why is the sunset red? The stuff between the stars
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
HBT 28-Jun-2005 Henry Throop Department of Space Studies Southwest Research Institute (SwRI) Boulder, Colorado John Bally University of Colorado Portugal,
Chapter 11 The Interstellar Medium
L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with.
The University of Western Ontario Shantanu Basu and Eduard Vorobyov Cores to Disks to Protostars: The Effect of the Core Envelope on Accretion and Disk.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Effects of early reionization on the formation of galaxies Hajime Susa Rikkyo University.
Japan-Italy Mini-Workshop Jan, 2009 Center for Computational Sciences, University of Tsukuba.
Bell Ringer 10/13 Why do we celebrate Columbus Day?
Star forming regions in Orion. What supports Cloud Cores from collapsing under their own gravity? Thermal Energy (gas pressure) Magnetic Fields Rotation.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
OWLS: OverWhelmingly Large Simulations The formation of galaxies and the evolution of the intergalactic medium.
Jonathan C. Tan Christopher F. McKee The Accretion Physics of Primordial Protostars.
Radiative Feedback by the First Stars Dan Whalen, T-2, LANL Whalen et al 2008, ApJ, 679, 925 Hueckstadt & Whalen, ApJ, in prep.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Two phases of WIMP dark matter annihilation in the First Stars Fabio Iocco INAF/Osservatorio Astrofisico di Arcetri TeVPA 2008, Beijing, september 25 th.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
Evolution of Stars Evolution of protostars onto main sequence –Gravitational contraction –Luminosity versus temperature and radius Properties of stars.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
Lines from the first-generation star formation process Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai.
The Evolution of Supermassive Pop III stars
Star Formation.
Star Chapter 19: A Traumatic Birth
The Life Cycle of Stars Starry, Starry Night.
FORMATION OF THE FIRST STARS IN THE UNIVERSE
Formation Processes of Early Cosmological Objects
Presentation transcript:

How Massive are the First Stars? Statistical Study of the primordial star formation  M popIII ALMA 北海道大学 / Jan , 2013 ○ Shingo Hirano 1 Takashi Hosokawa 1, Naoki Yoshida 1, Kazuyuki Omukai 2, H.W.Yorke 3 1 University of Tokyo, 2 University of Kyoto, 3 JPL/Caltech Variety of PopIII protostellar evolution  3 protostellar accretion paths  M popIII = 10 – a few 100 M sun

How Massive are the First Stars? 2 Primordial Halo Cosmological Simulation z =17  Protostar Core ( ~ 0.01 [M sun ] ) 600 kpc/h (comving) Accretion Phase of the Primordial Protostar ■ Different thermal evolution (main coolant is H 2 molecular)  M cloud ~ 1000 [M sun ] ZERO metallicity ■ No Metal & Dust  No radiation pressure (?) (cf, PopII, I star formation) M popIII ~ 1000 [M sun ] (?) UV Radiative Feedback  Stalls mass-accretion

UV Radiative Feedback 3 Ultraviolet (UV; hν > 13.6 [eV]) radiation from the protostar  Ionizing infalling neutral gas & creating HII region  Thermal pressure of the ionized region (high temperature) is much greater than that in neutral gas of the same density McKee & Tan (2008) Gas on the circumstellar disk is photo-ionized & heated  photo-evaporation Growth of HII region  Breakout & Expansion Accreting star emits the ionizing UV photons

Accretion History of Protostar 5 M popIII = 43 [M sun ]  moderate massive Accretion Rate [M sun /yrs] … however, M popIII depend on the initial quantities : Primordial Star–Forming Cloud Can be calculated by Cosmological Simulations Can be calculated by Cosmological Simulations Hosokawa et al. (2011) Radiative Hydrodynamics (RHD) Protostar Evolution UV radiative feedback Mass Accretion M star [M sun ]

Aim & Method 6 Determining the initial mass distribution of the PopIII stars (massive side; in case of the single-star formation) ■ Cosmological Simulation  primordial star-forming halos ■ RHD + Stellar Evolution  accretion histories Cosmological Simulation Accretion Histories M popIII Distribution M popIII Distribution Primordial Gas Clouds Primordial Gas Clouds

Cosmological Simulation 7

8 GADGET-2 : parallel SPH+N-body code (Springel 2005) + Primordial Chemistry (Yoshida et al. 2006, 2007) Initial Condition : z ini = 99, WMAP-7 (Komatsu et al. 2011) + zoom-in re-simulation technique  M resolve, init < 500 [M sun ] < M cloud Stop calculations when the collapsing center becomes : n cen ~ [cm -3 ] (L resolve ~ ー [pc] ~ 2 ー 20 [AU]) N sample L box [kpc/h] (comving) N zoom L soft [pc/h] (comving) L soft [pc] (z=19) m sph [M sun ]

Primordial Star-Forming Clouds N cen ~ [cm -3 ] R [pc] N H [cm -3 ] Gao et al. (2007)  Density profiles evolve self-similarly

Infall Rate of Collapsing Cloud Infall Rate [M sun /yrs] = 10 M enclosed [M sun ] Infall Rate [M sun /yrs] ~ – M enclosed [M sun ] V rad [km/sec] N H [cm -3 ] Characteristic quantities of clouds :

Protostellar Accretion Phase 11

Protostellar Accretion 12 Using the setting & method in Hosokawa et al. (2011) Radiative Hydrodynamics (RHD) ■ 2D-axsymmetric ■ Self-gravity, Hydro ■ Primordial Chemistry (15 reactions with H, H +, H 2, H -, e) ■ Radiative-transfer : cooling, feedback ■ L cell,min ~ 25 [AU], L box = 1.2 [pc], M total ~ few 1000 [M sun ] Protostar Evolution Mass Accretion UV radiative feedback * For calculating the case of the high mass accretion rate, we adopt a simple model of the stellar evolution

“Super-Giant” Protostar 13 Hosokawa et al. (2012) M star [M sun ] R star [R sun ] M enclosed [M sun ] Infall Rate [M sun /yrs] dM/dt > 0.04 [M sun /yrs]  No KH contraction (“Super-Giant” Protostar ) dM/dt > [M sun /yrs]  L tot (M)| ZAMS > L edd, cannot reach ZAMS

Model of “Rebound” Phase 14 Hosokawa et al. (2012) M star [M sun ] R star [R sun ] 1 1 ①②①② 2 2 * Ignore expansion phenomena  By expansion, the effective temperature, T eff, decreases  this phase is not important for the UV radiative feedback L tot ~ L edd  Scaling : R star // R ZAMS L star // L ZAMS dM/dt < 4E–3 [M sun /yrs]  Contraction to ZAMS (KH timescale)

Accretion History : one sample 15 ZAMS Mass Accretion  KH Contraction  ZAMS

16 M star [M sun ] R star [R sun ] Accretion Histories M star [M sun ] Accretion Rate [M sun /yrs] 10 0 Super-Giant / Rebound / Fiducial  Three paths exist

17 M star [M sun ] T eff [K] 5000 [K] Effective Temperature × UV Radiation

Accretion History onto Protostar 18 M star [M sun ] Accretion Rate [M sun /yrs] dM/dt > 0.04 [M sun /yrs] dM/dt > [M sun /yrs] dM/dt < [M sun /yrs] 11 / 108 … “Super-Giant” Phase 36 / 108 … “Rebound” Phase 61 / 108 … Become ZAMS 11 / 108 … “Super-Giant” Phase 36 / 108 … “Rebound” Phase 61 / 108 … Become ZAMS Hosokawa et al. (2012)  Star cannot become the Zero-Age Main-Sequence (ZAMS) structure Omukai&Palla (2003)  KH contraction & ZAMS directly  KH contraction stage disappears entirely

Initial infall rate v.s Final M popIII 19 Good Correlation : (4πR 2 ρv rad ) Jeans  M popIII Simple Estimation : M popIII ∝ (4πR 2 ρv rad ) Jeans  Decide M popIII without the calculation of accretion history (* Not consider fragmentation) M popIII [M sun ] (4πR 2 ρv rad ) Jeans [M sun /yrs]

Count 20 M popIII [M sun ] Heger & Woosley’02 Final fate of the non-rotating PopIII stars ■ 15 < M PopIII < 40  Core Collapse SNe ■ 40 < M PopIII < 140  Black Hole ■ 140 < M PopIII < 260  Pair-Instability SNe ■ 260 < M PopIII  Black Hole * with rapid rotation M PISN > 65 [M sun ] Chatzopoulos&Wheeler(2012) M popIII Distribution

Summary ■ more than 100 primordial halos show the wide range of accretion history ■ Three type of accretion histories (1) low dM/dt  KH contraction  UV radiative feedback (2) High dM/dt  cannot reach ZAMS  mass accretion continues (3) HUGE dM/dt  “supergiant” protostar  mass accretion continues M popIII = 10 – a few 100 [M sun ] □ Correlation between (4πR 2 ρv rad ) Jeans – M popIII  Can estimate M popIII by using Jeans quantity 21 M popIII [M sun ] (4πR 2 ρv rad ) Jeans [M sun /yrs] M star [M sun ] R star [R sun ] 10 0