Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy.

Slides:



Advertisements
Similar presentations
Recent Spectroscopic Investigation of P-Shell Λ - hypernuclei by the (e, eK+) Reaction - Analysis Status of E Chunhua Chen Hampton University July.
Advertisements

Tracking for high multiplicity event (E05-115) & E GEANT4 simulation 14/Dec/2011 School of science, Tohoku University Toshiyuki Gogami ( 後神 利志 )
E Analysis Update for the (e, e’K + ) spectroscopy exp. done in 2005 Yuncheng Han (Hampton University) for HKS-HES Collaboration Jan. 13,
Λ hypernuclea r spectroscop y at Jefferson Lab The 3 rd Korea-Japan on Nuclear and Hadron Physics at J-PARC, at Inha University in Korea 2014/3/20 – 2014/3/21.
Spectroscopic Investigation of  Hypernuclei in the Wide Mass Region by the (e,e’K + ) Reaction Chunhua Chen Hampton University Nov.6,2010/DNP.
Outline: 1) Experiment Setup 2) HES Geant4 Simulation 3) Missing Mass Spectra Calibration 4) Experiment status Zhihong Ye, March 16 th 2009 HU Group Meeting.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate school of Science, Tohoku Univ. Toshiyuki Gogami.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
Satoshi N. Nakamura, Tohoku University Study of Lambda hypernuclei with electron beams JLab HKS-HES collaboration, 2009, JLab Hall-C On behalf of JLab.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Lulin Yuan / Hampton University For HKS-HES collaboration Hall C Summer meeting, August 7, 2009.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
HYPERNUCLEAR PHYSICS - N interaction
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
HKS Analysis Status Report HKS Analysis Status Report Liguang Tang (Hampton/JLAB) Hall C User Meeting, Jan. 15, 2011 HKS has data taken in 2005 (E01-011)
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011.
New (e,e ’ K+) hypernuclear spectroscopy with a high-resolution kaon spectrometer Osamu Hashimoto Department of Physics, Tohoku University December 4-7.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar Study of elementary process in Hall-C p(γ*,eK + )Λ/Σ 0 9May2012 – 11May2012 Department.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Spectroscopy of  -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB FB18, Brazil, August 21-26, 2006.
E Analysis update Adjust of the Splitter-HKS Side Yuncheng Han May 09, 2012 Hampton University JLab hypernuclear collaboration meeting.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar TOSCA models for ENGE and other spectrometers 9May2012 – 11May2012 Department of Physics,
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar Analysis Status of Heavy targets data of HES-HKS 9May2012 – 11May2012 Department of.
HES-HKS analysis meeting Toshi Gogami 5Mar2014. Contents  Cross section & Λ binding energy 12 C(e,e’K + ) 12 Λ B 10 B(e,e’K + ) 10 Λ Be 7 Li(e,e’K +
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
Λ hypernuclear spectroscopic experiment via (e,e’K + ) at JLab Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab Hall-C in May 2009.
Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011.
Hypernuclei,  – N interaction  Electroproduction of hypernuclei E experiment UPDATE  Experimental equipment and setup Kaon identification  RICH.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Electrophoto-production of strangeness and  Hypernuclei Osamu Hashimoto Department of Physics, Tohoku University October 21-22, 2004 Jeju University.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Lulin Yuan / Hampton University 2008 APS April Meeting St. Louis Missouri, Apr. 12, 2008.
Study of light hypernuclei by the (e,e’K + ) reaction Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab E collaboration, 2009, JLab.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
HLAB meeting status report Toshiyuki Gogami 3Sep2013.
Spectrometer optics studies and target development for the 208Pb(e,e’p) experiment in Hall A at Jefferson Lab, GUIDO M. URCIUOLI, INFN, Roma, Italy, JUAN.
1 Kenematic Calibration of Hypernuclear Missing Mass by using Geant4 simulation Outline: 1, Data Generating 2, Kenematics Calibration a) E 0 &P Calibration.
Simulation of Heavy Hypernuclear Lifetime Measurement For E Zhihong Ye Hampton University HKS/HES, Hall C Outline: 1,Physics 2,Detectors 3,Events.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Spectroscopic study of  hypernuclei in the medium-heavy mass region and p-shell region using the (e,e’K + ) reaction (PR08-002) JLab PAC33 16, Jan, 2008.
Hypernuclear Spectroscopy with Electron Beams
L. Tang Hampton University / JLAB On behalf of Hall A collaboration
Florida International University, Miami, FL
Target Effect, Beam correction and T0 Adjustment
Precision Measurement of the Electroproduction of p0 Near Threshold:
The First
LEDA / Lepton Scattering on Hadrons
LEDA / Lepton Scattering on Hadrons
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
L. Tang Hampton University / JLAB On behalf of Hall A collaboration
Progress on J-PARC hadron physics in 2016
Spectroscopy of -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB SNP2006, Zhangjiajie, Sept.
Presentation transcript:

Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy

Outline  Experimental Goal of E05115  Kinematics of the E05115  Experimental Setup of E05115  Analysis process and status  Preliminary results

Experimental Goal The 3rd Generation (e,e’K+) Hypernuclear Spectroscopy in JLab- HallC  Medium - heavy hypernuclear spectroscopy 52 Cr(e,e’K+) 52  V   hyperon bound in the mean field  quark picture vs. conventional picture  Light  hypernuclear spectroscopy   N interaction, ls coupling, Charge Symmetry Breaking  p shell hypernuclei : 12 C(e,e'K+) 12 Λ B, 7 Li(e,e'K+) 7 Λ He, 10 B(e,e'K+) 10 Λ Be, and 9 Be(e'K+) 9 Λ Li Calibration by the elementary process p(e,e’K+)Λ or Σ : H2O and CH2

Kinematics of the E Experiment Momentum: 2.344GeV/c Momentum: 0.844GeV/c ±17% Angular acceptance: 3° 〜 9° Momentum: 1.2GeV/c ±12.5% Angular acceptance : 1° 〜 13 ° 1.5GeV γ* Scattered electron K+ Electron beam M.Q.Tran et al. PLB445 (1998) 20   p →  K + Target nucleus p Coincidence measurement

Kinematics of the E Experiment Momentum: 2.344GeV/c Momentum: 0.844GeV/c ±17% Angular acceptance: 3° 〜 9° Momentum: 1.2GeV/c ±12.5% Angular acceptance : 1° 〜 13 ° 1.5GeV γ* Scattered electron K+ Electron beam M.Q.Tran et al. PLB445 (1998) 20   p →  K + Target nucleus p Coincidence measurement

Experimental Setup

- Tilt Method- Electroproduction differential cross section(Miloslav Sontana) Г : virtual photon flux

Experimental Setup -Detector Package- HES-D e’ EHOD2 EHOD 1 EDC2 EDC1 HES Detectors

Flow Chart Tracking (KDC) Tracking (KDC) TOF (Hodoscopes) TOF (Hodoscopes) KID (AC,WC,LC) KID (AC,WC,LC) HKS Focal Plane (X,X’,Y,Y’,T fp ) HKS Focal Plane (X,X’,Y,Y’,T fp ) HKS Optics (HKS+Splitter) Optics (HKS+Splitter) HKS Target Plane (X’, Y’, P, T tar ) HKS Target Plane (X’, Y’, P, T tar ) Tracking (EDC) Tracking (EDC) TOF (Hodoscopes) TOF (Hodoscopes) HES Focal Plane (X,X’,Y,Y’, T fp ) HES Focal Plane (X,X’,Y,Y’, T fp ) HES Optics (HES+Splitter) Optics (HES+Splitter) HES Target Plane (X’, Y’, P, T tar ) HES Target Plane (X’, Y’, P, T tar ) Coincident (RF ) Coincident (RF ) Kinematics Correction (Beam, Target effects, Momentum, Angular) Kinematics Correction (Beam, Target effects, Momentum, Angular) Missing Mass Raw Data Need to do Data & Info Lambda&Sigma Spectra Lambda&Sigma Spectra Geant4 Simulation HKS Sieve Slit HES Sieve Slit

Particle ID

Tracking Status HKS tracking residual~200µm EDC1-1 single CH2 Run(76312)

Coincident Events Selection abs( coincident time)<=1 Path-length correction has done  Coincident Time: The correlation of HKS target time and HES target time, give us the coincident spectrum: Real events Accidental

Forward Optics Tuning Purple: Real HKS SS data Blue: Geant4 Simulation Target BeamKaon Q1 Q2 Splitter field contour on xoz plane The leakage of splitter fringe field causes the cross talk between the splitter and quadrupole 15

Forward Optics Tuning The asymmetry functions are introduced and tuned for HKS&HES quadrupole field Bx and By, independently.

Spectrometer System Calibration Kinematics calibration (ΔE beam0, Δ P K,Δ Pe’ ) Optical calibration M 17

Kinematics calibration: utilizing well known masses of ,   produced from CH 2, 12 Λ Bgs from 12 C to determine binding energy to a level of precision ~100keV Optical calibration: Minimize Chisquare w.r.t reconstruction matrix M by an Nonlinear Least Square method. Mgs: fitted mean M Λ &M Σ : theoretical data ω i : statistic weigth 18

Preliminary Results Start Point Current Status 19

Preliminary Results 20

Preliminary Results Resolution : ~850 keV (FWHM) for g.s. 7 Li(e,e'K+) 7 Λ He Resolution : ~700 keV (FWHM) for g.s 12 C(e,e'K+) 12 Λ B 21

Thank you for your attention! 22

BACK UP 23

CoincidentCoincident t 2 ns Electron pulse  RF Structure: Jlab electron beam has a 2ns pulse pattern. After path length correction, we have the structure of HKS target time: Real Events Accidental RF vs HES XRF vs HKS X  Coincident Time: The correlation of HKS target time and HES target time, give us the coincident spectrum: 2ns After Path length correction 24