1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul

Slides:



Advertisements
Similar presentations
5/1/ Finite Difference Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Advertisements

Newton’s Divided Difference Polynomial Method of Interpolation
1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
10/20/ Runge 2 nd Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/16/ Euler Method Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
11/30/ Secant Method Industrial Engineering Majors Authors: Autar Kaw, Jai Paul
12/1/ Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Newton-Raphson Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education.
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
3/12/ Trapezoidal Rule of Integration Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
6/13/ Secant Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Industrial Engineering Majors Authors: Autar Kaw, Luke Snyder
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education for STEM Undergraduates

Spline Method of Interpolation

3 What is Interpolation ? Given (x 0,y 0 ), (x 1,y 1 ), …… (x n,y n ), find the value of ‘y’ at a value of ‘x’ that is not given.

Interpolants Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate.

Why Splines ?

Why Splines ? Figure : Higher order polynomial interpolation is a bad idea

Linear Interpolation

Linear Interpolation (contd)

Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, Find: the value of y at x = 4 using linear splines, the path of the robot if it follows linear splines, the length of that path. Figure 2 Location of holes on the rectangular plate.

Linear Interpolation

Linear Interpolation (contd) Find the path of the robot if it follows linear splines.

Linear Interpolation (contd) Find the length of the path traversed by the robot following linear splines.

Quadratic Interpolation

Quadratic Interpolation (contd)

Quadratic Splines (contd)

Quadratic Splines (contd)

Quadratic Splines (contd)

Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, Find: the length of the path traversed by the robot using quadratic splines and compare the answer to the linear spline and a fifth order polynomial result. Figure 2 Location of holes on the rectangular plate.

Solution

Solution (contd)

Solution (contd)

Solution (contd)

Solution (contd) iaiai aiai aiai 10 − − − − − − − Solving the above 15 equations gives the 15 unknowns as

Solution (contd)

Solution (contd)

Solution (contd)

Comparison Compare the answer from part (a) to linear spline result and fifth order polynomial result.

Comparison The absolute relative approximate error obtained between the results from the linear and quadratic spline is The absolute relative approximate error obtained between the results from the fifth order polynomial and quadratic spline is

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit hod.html

THE END