Chapter 25 The Reflection of Light: Mirrors. LAW OF REFLECTION The incident ray, the reflected ray, and the normal to the surface all lie in the same.

Slides:



Advertisements
Similar presentations
Chapter 17 Geometrical Optics.
Advertisements

Chapter 23 Mirrors and Lenses
1 Geometric optics Light in geometric optics is discussed in rays and represented by a straight line with an arrow indicating the propagation direction.
TOC 1 Physics 212 and 222 Reflection and Mirrors What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
→ ℎ
Chapter 31 Images.
Mirrors Law of Reflection The angle of incidence with respect to the normal is equal to the angle of reflection.
A wave front consists of all points in a wave that are in the same phase of motion. A wave front is one of many properties that light waves share with.
Chapter 32Light: Reflection and Refraction. Electromagnetic waves can have any wavelength; we have given different names to different parts of the wavelength.
Reflection of Light. When light rays hit an object, they change direction. The type of surface the light encounters determines the type of reflection.
Curved Mirrors.
air water As light reaches the boundary between two media,
Chapter 25. The Reflection of Light: Mirrors
Chapter 23 Mirrors and Lenses.
Light: Geometric Optics
Chapter 36 Image Formation. Summary: mirrors Sign conventions: + on the left - on the right Convex and plane mirrors: only virtual images (for real objects)
Chapter 25. Mirrors and the Reflection of Light Our everyday experience that light travels in straight lines is the basis of the ray model of light. Ray.
Chapter 36 Image Formation Dr. Jie Zou PHY 1371.
Physics 110G Light TOC 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Reflection Physics Department, New York City College of Technology.
Optics Reflections/Mirrors 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Physics Mechanics Fluid Motion Heat Sound Electricity Magnetism Light.
Geometrical Optics (Lecture II)
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Curved Mirrors The most common type of curved mirror is a spherical mirror A spherical mirror has the shape of a section from the surface of a sphere.
Chapter 34. Images What is Physics? Two Types of Image
Spherical Mirrors Spherical mirror – a section of a sphere of radius R and with a center of curvature C R C Mirror.
Formation of Images by Spherical Mirrors. For an object infinitely far away (the sun or starts), the rays would be precisely parallel.
Ray Model A useful model under certain circumstances to explain image formation. Ray Model: Light travels in straight-line paths, called rays, in ALL.
Lecture 14 Mirrors Chapter 23.1  23.3 Outline Flat Mirrors Spherical Concave Mirrors Spherical Convex Mirrors.
Mirrors and Lenses.
Chapter 25 The Reflection of Light: Mirrors Wave Fronts and Rays A hemispherical view of a sound wave emitted by a pulsating sphere. The rays are.
1 Reflection and Mirrors. 2 The Law of Reflection “ The angle of incidence equals the angle of reflection.”
Image Formation. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction. When we.
Light: Geometric Optics Chapter Ray Model of Light Light travels in a straight line so a ray model is used to show what is happening to the light.
Chapter 25. Mirrors and the Reflection of Light
The Reflection of Light: Mirrors
AP Physics Chp 25. Wavefronts – location of the same point for the same phase of the wave Rays – perpendicular to the wavefront Plane waves – all rays.
Chapter 36 Image Formation (Lens and Mirrors) Using the ray approximation of geometric optics, we can now study how images are formed with mirrors and.
PROOF OF d i = d o ii rr 11 22 . DESCRIPTION OF d i = d o  Ray of light leaves base & strikes mirror at  i (reflected at same  )  Angles.
3/4/ PHYS 1442 – Section 004 Lecture #18 Monday March 31, 2014 Dr. Andrew Brandt Chapter 23 Optics The Ray Model of Light Reflection; Image Formed.
Curved Mirrors Chapter 14, Section 3 Pg
25.4: Spherical Mirrors. Concave Mirror Light rays near and parallel to the principal axis are reflected from a concave mirror and converge at the focal.
Chapter 36 Image Formation.
AP Physics IV.C Geometric Optics. Wave Fronts and Rays.
Announcements Two exams down, one to go! No HW this week. Office hours: My office hours today from 2-3 pm (or make an appointment) Always check out
Plane Mirror: a mirror with a flat surface
Reflection & Mirrors. Reflection The turning back of an electromagnetic wave (light ray) at the surface of a substance. The turning back of an electromagnetic.
Physics Mechanics Fluid Motion Heat Sound Electricity Magnetism Light.
The amount of reflection depends on how different the media are.
Reflection of Light. Reflectance u Light passing through transparent medium is transmitted, absorbed, or scattered u When striking a media boundary, light.
Chapter 36 Image Formation 1: 1. Flat mirror 2. Spherical mirrors.
Mirrors. Mirrors and Images (p 276) Light travels in straight lines, this is the reason shadows and images are produced (p 277) Real images are images.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
Mirrors.
PHY 102: Lecture Wave Fronts and Rays 9.2 Reflection of Light
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
1 Reflection and Mirrors Chapter The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface is called.
The Reflection of Light: Mirrors
Mechanics Fluids Sound Heat Electricity Magnetism Light
The Reflection of Light: Mirrors
air water As light reaches the boundary between two media,
Reflection of Light from Spherical Mirrors
REFLECTIONS of PLANE AND SPHERICAL MIRRORS
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
Presentation transcript:

Chapter 25 The Reflection of Light: Mirrors

LAW OF REFLECTION The incident ray, the reflected ray, and the normal to the surface all lie in the same plane, and the angle of incidence equals the angle of reflection.

The image has three properties: 1.It is upright. 2.It is the same size as you are. 3.The image is as far behind the m mirror are you are in front of it.

The geometry used to show that the image distance is equal to the object distance.

Conceptual Example 1 Full-Length Versus Half-Length Mirrors What is the minimum mirror height necessary for her to see her full image?

Conceptual Example 2 Multiple Reflections A person is sitting in front of two mirrors that intersect at a right angle. The person sees three images of herself. Why are there three, rather than two, images?

If the inside surface of the spherical mirror is polished, it is a concave mirror. If the outside surface is polished, is it a convex mirror. The law of reflection applies, just as it does for a plane mirror. The principal axis of the mirror is a straight line drawn through the center and the midpoint of the mirror.

Light rays near and parallel to the principal axis are reflected from the concave mirror and converge at the focal point. The focal length is the distance between the focal point and the mirror.

The focal point of a concave mirror is halfway between the center of curvature of the mirror C and the mirror at B.

Rays that lie close to the principal axis are called paraxial rays. Rays that are far from the principal axis do not converge to a single point. The fact that a spherical mirror does not bring all parallel rays to a single point is known as spherical abberation.

25.4 Spherical Mirrors When paraxial light rays that are parallel to the principal axis strike a convex mirror, the rays appear to originate from the focal point.

CONCAVE MIRRORS This ray is initially parallel to the principal axis and passes through the focal point. This ray initially passes through the focal point, then emerges parallel to the principal axis. This ray travels along a line that passes through the center.

Image formation and the principle of reversibility

When an object is located between the focal point and a concave mirror, and enlarged, upright, and virtual image is produced.

CONVEX MIRRORS Ray 1 is initially parallel to the principal axis and appears to originate from the focal point. Ray 2 heads towards the focal point, emerging parallel to the principal axis. Ray 3 travels toward the center of curvature and reflects back on itself.

The virtual image is diminished in size and upright.

These diagrams are used to derive the mirror equation.

Example 5 A Virtual Image Formed by a Convex Mirror A convex mirror is used to reflect light from an object placed 66 cm in front of the mirror. The focal length of the mirror is -46 cm. Find the location of the image and the magnification.

Summary of Sign Conventions for Spherical Mirrors