18.09.2006 1 M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest,

Slides:



Advertisements
Similar presentations
Joint Mathematics Meetings Hynes Convention Center, Boston, MA
Advertisements

2ª aula Evolution Equation. The Finite Volume Method.
Reduction of Temporal Discretization Error in an Atmospheric General Circulation Model (AGCM) Daisuke Hotta Advisor: Prof. Eugenia Kalnay.
(c) MSc Module MTMW14 : Numerical modelling of atmospheres and oceans Staggered schemes 3.1 Staggered time schemes.
RAMS/BRAMS Basic equations and some numerical issues.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
Krakow - September, 15th 2008COSMO WG 2 - Runge Kutta1 Further Developments of the Runge-Kutta Time Integration Scheme Investigation of Convergence (task.
ICONAM ICOsahedral Non-hydrostatic Atmospheric Model -
Improvement of the Semi-Lagrangian advection by ‘selective filling diffusion (SFD)' WG2-meeting COSMO-GM, Moscow, Michael Baldauf (FE13)
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
Numerical Integration of Partial Differential Equations (PDEs)
Basic Concepts of Numerical Weather Prediction 6 September 2012.
Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst,
A Look at High-Order Finite- Volume Schemes for Simulating Atmospheric Flows Paul Ullrich University of Michigan.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Aktionsprogramm 2003 AP 2003: LMK Properties of the dynamical core and the metric terms of the 3D turbulence in LMK COSMO- General Meeting.
Titelfoto auf dem Titelmaster einfügen Numeric developments in COSMO SRNWP / EWGLAM-Meeting Dubrovnik, Michael Baldauf 1, Jochen Förstner.
Priority Program SPP 1167 of the DFG Convective and Orographically Induced Precipitation Study Karlsruhe Institute of Technology Analysis of the regional.
Task: replacement of the diagnostic scheme for rain/snow in LM 3.5 by a prognostic scheme in operational use since 26 Apr (LM 3.9) Aim: improvement.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
1 A Framework for The Analysis of Physics-Dynamics Coupling Strategies Andrew Staniforth, Nigel Wood (Met Office Dynamics Research Group) and Jean Côté.
Implementation of an Advection Scheme based on Piecewise Parabolic Method (PPM) in the MesoNH The main goal of this study was to estimate if the RGSW model.
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 5a.
Lecture 3.
1 EEE 431 Computational Methods in Electrodynamics Lecture 4 By Dr. Rasime Uyguroglu
Priority project CDC Overview Task 1 COSMO-GM, Sept. 2010, Moscow M. Baldauf (DWD)
A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish.
© Crown copyright Met Office A Framework for The Analysis of Physics-Dynamics Coupling Strategies Andrew Staniforth, Nigel Wood (Met O Dynamics Research)
Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Rome Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany.
M. Baldauf (DWD)1 SMC-meeting, Bologna, 05/06. Feb with verification extensions for SMC-teleconf., 16. April 2014 Michael Baldauf (FE13) Proposed.
7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of.
Deutscher Wetterdienst 1FE 13 – Linear solutions of flow over mountains COSMO General Meeting WG2 'Numerics and Dynamics' Michael.
24-28 Sept. 2012Baldauf, Reinert, Zängl (DWD)1 Michael Baldauf, Daniel Reinert, Günther Zängl (DWD, Germany) PDEs on the sphere, Cambridge, Sept.
COSMO Priority Project ‚Runge-Kutta‘ Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2007’ COSMO General Meeting, Athen
Manno, , © by Supercomputing Systems 1 1 COSMO - Dynamical Core Rewrite Approach, Rewrite and Status Tobias Gysi POMPA Workshop, Manno,
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Deutscher Wetterdienst 1FE 13 – An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core Michael Baldauf (DWD) Bill.
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
Matthias Raschendorfer DWD Recent extensions of the COSMO TKE scheme related to the interaction with non turbulent scales COSMO Offenbach 2009 Matthias.
10-13 Sept. 2012M. Baldauf (DWD)1 Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany Priority Project "Conservative Dynamical Core" Final report.
Numerical Analysis – Differential Equation
Discretization Methods Chapter 2. Training Manual May 15, 2001 Inventory # Discretization Methods Topics Equations and The Goal Brief overview.
Requirements of High Accuracy Computing 1) Adopted numerical scheme must resolve all physical time and length scales. 2) Numerical scheme must be neutrally.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
1 Reformulation of the LM fast- waves equation part including a radiative upper boundary condition Almut Gassmann and Hans-Joachim Herzog (Meteorological.
COSMO-DE, M. Baldauf Stability considerations of advection schemes and Improvements of Semi-Lagrange advection for the Runge-Kutta dynamical.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Component testing of the COSMO model’s turbulent diffusion.
Numerics of Parametrization ECMWF training course May 2006 by Nils Wedi  ECMWF.
Deutscher Wetterdienst Flux form semi-Lagrangian transport in ICON: construction and results of idealised test cases Daniel Reinert Deutscher Wetterdienst.
Status Report WG2 J. Steppeler, DWD Zurich Z-Coordinate Runge Kutta and Semi-Lagrangian methods Direct implicit solvers Courant number independent.
Deutscher Wetterdienst 1FE 13 – Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2008’ COSMO General Meeting, Krakau
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 32.
Time Integration Schemes Bill Skamarock NCAR/MMM 1.Canonical equations for scheme analyses. 2.Time-integration schemes used in NWP models.
Priority project CDC Task 1.4: Choice of the anelastic equation system and Milestone 3.2: Suitability of fundamental approximations PP CDC-Meeting, ,
A revised formulation of the COSMO surface-to-atmosphere transfer scheme Matthias Raschendorfer COSMO Offenbach 2009 Matthias Raschendorfer.
Lecture 4: Numerical Stability
Development of nonhydrostatic models at the JMA
Conservative Dynamical Core (CDC)
Convergence in Computational Science
21th Lecture - Advection - Diffusion
Objective Numerical methods.
Ensemble variance loss in transport models:
Terrain-following coordinates over steep and high orography
Objective Numerical methods Finite volume.
Bucharest 2006 J. Steppeler (DWD)
Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany
COSMO implementations at CNMCA: tests with different dinamycal options
Conservative Dynamical Core (CDC)
Presentation transcript:

M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest, Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany

M. Baldauf, DWD Outline Stability analysis of the p‘T‘-dynamics (PP ‚Runge-Kutta, Task 10) Vertical advection of 3. order (PP ‚Runge-Kutta‘, Task 8) New stability criteria for the small and the big timestep Tool for conservation properties of LM (PP ‚Runge-Kutta‘, Task 3)

M. Baldauf, DWD Von-Neumann-stability analysis of a 2D (horizontal + vertical) system with advection + sound + buoyancy ( + smoothing, filtering) constraints: no bondaries (wave expansion in an  extended medium) assumptions about the base state: p 0 =const, T 0 =const  valid for atmospheric motions with about 2-3 km vertical extension no orography (i.e. no metric terms) only horizontal advection PP ‚Runge-Kutta‘, Task 10

M. Baldauf, DWD (p‘T‘-Dynamics)

M. Baldauf, DWD Tool to inspect stability properties von-Neumann-analysis for any combination of c s, U, dT 0 /dz,  T,  t,... : calculate the amplification matrizes Q (4*4-matrix) calculate the eigenvalues (use of LAPACK-EV-subroutines) search of the biggest EV by scanning through kx  x = - ...+ , kz  z = - ...+ . ‘verification’: analytically known stability limits (advection, sound, divergence damping) are calculated correctly physical stratification instability (i.e. N 2 <0) will be reproduced (  combination ‘buoyancy + sound’ works)

M. Baldauf, DWD Sound Courant-numbers: 2 dxdampingstable for C x <1 forward-backw.+vertically Crank-Nic. (  2,4,6 >1/2) 2 dxneutralstable for C x <1 forward-backw.+vertically Crank-Nic. (  2,4,6 =1/2) 2 dx, 2dzneutralstable for C x 2 +C z 2 <1forward-backward, staggered grid 4 dx, 4dzneutralstable for C x 2 +C z 2 <2forward-backward (Mesinger, 1977), unstaggered grid -uncond. unstablefully explicit temporal discret.: ‘generalized’ Crank-Nicholson  =1: implicit,  =0: explicit spatial discret.: centered diff.

M. Baldauf, DWD

M. Baldauf, DWD Choose CN-parameters for buoyancy in p‘T‘-dynamical core of the LMK  =0.5 (‚pure‘ Crank-Nic.)  =0.6  =0.7  =0.8  =0.9  =1.0 (purely implicit)  choose  =0.7 as the best value

M. Baldauf, DWD ‚Verification‘ of the stability analysis tool: dependency from stratification C  =-0.35C  =-0.37C  =-0.38 C  =-0.39 C  = C  =-0.4 C  =-0.41C  =-0.42C  =-0.45 critical value: C  =  N=0  Tool works for ‚buoyancy + sound‘

M. Baldauf, DWD xkd

M. Baldauf, DWD C div =0.025C div =0.05 C div =0.075C div =0.1C div =0.15 Influence of C div C div = xkd * (c s *  t/  x) 2 ~0.35

M. Baldauf, DWD without divergence filteringwith 3D- divergence filteringwith 2D- (only horizontal) divergence filtering

M. Baldauf, DWD stability of the single waves for C adv =1, C snd =0.7 without divergence filteringwith 3D- divergence filteringwith 2D- (only horizontal) divergence filtering

M. Baldauf, DWD summary von-Neumann-stability analysis of a 2D (horizontal + vertical) system with advection + sound + buoyancy ( + smoothing, filtering) without divergence damping: weak instability of long waves remains without orography: no relevant difference between 2D- and (assumed better) 3D-Divergenzdämpfung. remark A. Gassmann: no difference in amplitude- but in phase-information experience from LMK: there exist cases which are unstable with 2D-divergence damping (orography?) there exist cases which can be stabilized by 2D-divergence damping  implementation of 3D-div.-damping seems to be reasonable? LMK-Testsim. mit Bryan-Fritsch-Test: nur mit 3D-Divergenzdämpfung stabil

M. Baldauf, DWD Improved vertical advection for the dynamical variables (u, v, w, T or T‘, p‘) Motivation: explicitly resolved convection  vertical advection has increased importance  use a scheme of higher order (compare: horizontal adv. from 2. order to 5. order in RK-scheme)  greater w (~20 m/s)  Courant-criterium is violated  implicit scheme or CNI-explicit scheme up to now:implicit (Crank-Nicholson) advektion 2. order (centered differences) new: implicit (Crank-N.) advektion 3. order  LES with a 5-banddiagonal-matrix implicit Adv. 3. Ordn. in every RK-step: computation costs ~30% of total computation time! planned: outside of the RK-scheme (splitting error?, stability with fast waves?) PP ‚Runge-Kutta‘, Task 8

M. Baldauf, DWD Implicit Vertical Advection for dynamic variables (u, v, w, T or T‘, p‘) Generalized Crank-Nicholson-advection (Dimensionless) Advection operator for centered differences 2. order (3-point-stencil):  Lin. eq. system with a tridiagonal matrix, needs ~3 N operations Motivation for a better scheme: explicitly resolved convection, higher values of w

M. Baldauf, DWD dim.less advection operator for upwind 3. order (4-point stencil)  =1/2:unconditionally stable, damping, truncation error 3. order  >1/2:unconditionally stable, damping, trunc. error 1. order  <1/2: unstable Lin. eq. system with a 5-band diagonal matrix needs ~14 N operations LMK: Subr. complete_tendencies_uvwTpp_CN3 (  Crowley 3. order, e.g. Tremback et al., 1987) case C j >0

M. Baldauf, DWD Idealized 1D advection test analytic sol. implicit 2. order implicit 3. order implicit 4. order C= timesteps C= timesteps

M. Baldauf, DWD Real case study: LMK (2.8 km resolution) ‚ , 12UTC-run‘ implicit vertical adv. 2. orderdifference: 3. order - 2. order

M. Baldauf, DWD Real case study: LMK (2.8 km resolution)‚ , 00UTC-run‘ implicit vertical adv. 2. orderdifference: 3. order - 2. order

M. Baldauf, DWD Calculation of small timestep Use correct gridlength:  x = R cos   (important for bigger areas) Use correct 2D criterion (dependency from  x and  y)  Subr. calc_small_timestep To do:  t crit is calculated with T=303 K (?) influence of buoyancy?

M. Baldauf, DWD 2D-advection in RK-schemes by a simple adding of tendencies (operator splitting (e.g. corner transport upstream (CTU) method) is not possible for upstream 3., 5.,... order ) this is limited by |C x | + |C y | < const. this can be proven for RK2 + upwind 3. order it holds empirically also for RK3 + upwind 5. order compare with the usual formulated 2-dimensional stability criterion:  Subr. check_cfl_horiz_advection 2-dim. horizontal Advection

M. Baldauf, DWD Tool to inspect conservation properties of LM integral over a volume (arbitrary square-stone): ready Subr. init_integral_3D: define square-stone (in the transformed grid!), domain decomp. Function integral_3D_total: calc. volume integral Function integral_3D_cond: calc. vol. integral over individual processor surface integral over the fluxes: work to do! PP ‚Runge-Kutta‘, Task 3 balance equation for scalar  : temporal change flux divergence sources / sinks