Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.

Slides:



Advertisements
Similar presentations
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Advertisements

Hany Ferdinando Dept. of Electrical Eng. Petra Christian University
ELEN 5346/4304 DSP and Filter Design Fall Lecture 7: Z-transform Instructor: Dr. Gleb V. Tcheslavski Contact:
Copyright © 2008 Pearson Education, Inc. Chapter 1 Linear Functions Copyright © 2008 Pearson Education, Inc.
EE-2027 SaS, L18 1/12 Lecture 18: Discrete-Time Transfer Functions 7 Transfer Function of a Discrete-Time Systems (2 lectures): Impulse sampler, Laplace.
Discrete-Time Signal processing Chapter 3 the Z-transform
The z Transform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl.
The Laplace Transform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1.
Z-Transform Fourier Transform z-transform. Z-transform operator: The z-transform operator is seen to transform the sequence x[n] into the function X{z},
Signals and Systems Discrete Time Fourier Series.
EC 2314 Digital Signal Processing By Dr. K. Udhayakumar.
UNIT - 4 ANALYSIS OF DISCRETE TIME SIGNALS. Sampling Frequency Harry Nyquist, working at Bell Labs developed what has become known as the Nyquist Sampling.
The z-Transform Prof. Siripong Potisuk. LTI System description Previous basis function: unit sample or DT impulse  The input sequence is represented.
10.0 Z-Transform 10.1 General Principles of Z-Transform linear, time-invariant Z-Transform Eigenfunction Property y[n] = H(z)z n h[n]h[n] x[n] = z n.
CE Digital Signal Processing Fall 1992 Z Transform
Engineering Mechanics: Statics, Thirteenth Edition R. C. Hibbeler Copyright ©2013 by Pearson Education, Inc. All rights reserved. EXAMPLE 3.1.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
1 1 Chapter 3 The z-Transform 2 2  Consider a sequence x[n] = u[n]. Its Fourier transform does not converge.  Consider that, instead of e j , we use.
Dan Ellis 1 ELEN E4810: Digital Signal Processing Topic 4: The Z Transform 1.The Z Transform 2.Inverse Z Transform.
1 Z-Transform. CHAPTER 5 School of Electrical System Engineering, UniMAP School of Electrical System Engineering, UniMAP NORSHAFINASH BT SAUDIN
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Engineering Mechanics: Statics, Thirteenth Edition R. C. Hibbeler Copyright ©2013 by Pearson Education, Inc. All rights reserved. EXAMPLE 11.1.
The Inverse z-Transform In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But.
Copyright © 2010 Pearson Education, Inc. All rights reserved. Special Factoring The Difference of Squares Difference of Squares x 2 – y 2 = ( x + y )(
Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Signal and Systems Prof. H. Sameti Chapter 10: Introduction to the z-Transform Properties of the ROC of the z-Transform Inverse z-Transform Examples Properties.
The Z-Transform Quote of the Day Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound.
Sampling and Reconstruction The impulse response of an continuous-time ideal low pass filter is the inverse continuous Fourier transform of its frequency.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Chapter 2 Opener © 2014 Pearson Education, Inc.. Figure 2.1 © 2014 Pearson Education, Inc.
Signals and Systems Using MATLAB Luis F. Chaparro.
From Advanced Programming in the UNIX ® Environment, Third Edition, by W. Richard Stevens and Stephen A. Rago (ISBN-13: ). Copyright ©
 Signal: Physical quantity that varies with time, space or any other independent variable/s.  System: Physical device that performs an operation on.
Review of DSP.
The z-Transform Page 1 Chapter 2 Z-transfrom The Z-Transfrom.
Section 1.5 Circles Copyright © 2013 Pearson Education, Inc. All rights reserved.
The Z-Transform.
© 2015 Pearson Education, Inc.
Chapter 7 Factoring.
© 2015 Pearson Education, Inc.
Exception Handling: A Deeper Look
Section 2.5 Graphing Techniques; Transformations
Copyright © 2013 Pearson Education, Inc. All rights reserved
Section 9.4 Area of a Triangle
Understanding a Genome Sequence
Section 2.5 Graphing Techniques; Transformations
The Inverse Trigonometric Functions (Continued)
Data Mining, Second Edition, Copyright © 2006 Elsevier Inc.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Section 10.1 Polar Coordinates
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Copyright © 2013 Elsevier Inc. All rights reserved.
Section R.2 Algebra Essentials
Section 10.5 The Dot Product
Basic Matrix Operations
Modeling Functionality with Use Cases
Unit 4 Review Answers.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Copyright © 2013 Elsevier Inc. All rights reserved.
Fundamental Theorem of Algebra
Copyright © 2012, Elsevier Inc. All rights Reserved.
Properties of the Trigonometric Functions
Presentation transcript:

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.1 The unit circle in the complex z-plane.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.2 The ROC as a ring in the z-plane. For specific cases, the inner boundary can extend inward to the origin, and the ROC becomes a disc. For other cases, the outer boundary can extend outward to infinity.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.3 Pole–zero plot and ROC for Example 3.1.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.4 Pole–zero plot and ROC for Example 3.2.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.5 Pole–zero plot and ROC for the individual terms and the sum of terms in Examples 3.3 and 3.4. (a) 1/(1 − 1/2z −1 ), |z| > 1/2. (b) 1/(1 + 1/3z −1 ), |z| > 1/3. (c) 1/(1 − 1/2z −1 ) + 1/(1 + 1/3z −1 ), |z| > 1/2.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.6 Pole–zero plot and ROC for Example 3.5.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.7 Pole–zero plot for Example 3.6 with N = 16 and a real such that 0 < a < 1. The ROC in this example consists of all values of z except z = 0.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 3.1 SOME COMMON z-TRANSFORM PAIRS

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.8 Examples of four z-transforms with the same pole–zero locations, illustrating the different possibilities for the ROC, each of which corresponds to a different sequence: (b) to a right-sided sequence, (c) to a left-sided sequence, (d) to a two-sided sequence, and (e) to a two-sided sequence.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.9 Pole–zero plot for the system function in Example 3.8.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.10 Pole–zero plot and ROC for Example 3.9.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.11 Pole–zero plot for the z-transform in Example 3.10.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 3.2 SOME z-TRANSFORM PROPERTIES

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 3.12 Pole–zero plot for the z-transform of the convolution of the sequences u[n] and a n u[n] (assuming |a| < 1).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.4

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.37

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.38

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.42

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.43

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.48-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P3.48-2