Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Study on the Injection System for Compact Cyclotron Mass Spectrometry Do Gyun Kim, Joonyeon Kim, H. C. Bhang Department of Physics, Seoul National University.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Ion Beam Analysis techniques:
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Measurement of pd breakup cross sections at E/A = 13 MeV in the off-plane star configuration Yukie Maeda (University of Miyazaki) H. Shimoda, K. Sagara,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Hybrid emulsion detector for the neutrino factory Giovanni De Lellis University of Naples“Federico II” Recall the physics case The detector technology.
Carbon Injector for FFAG
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Direct measurement of the 18 Ne( , p) 21 Na reaction with a GEM – MSTPC Takashi Hashimoto CNS, University of Tokyo Collaborators CNS S. Kubono, H. Yamaguchi,
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
Prospects to measure 8 B production VLADIMIR KRAVCHUK Laboratori Nazionali di Legnaro, Italy EUROnu week in Strasbourg 1-4 June 2010.
Search for QFS anomaly in pd - breakup reaction below E p = 19 MeV Shuntaro Kimura, K. Sagara, S. Kuroita, T. Yabe, M. Okamoto, K. Ishibashi, T. Tamura,
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
100MeV/u 12 C+ 12 C Scattering at RCNP Weiwei Qu 、 Gaolong Zhang 、 Satoru Terashima 、 Isao Tanihata 、 Chenlei Guo 、 Xiaoyun Le 、 Hoo Jin Ong 、 Harutaka.
Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions Simone Bottoni University of Milan & KU Leuven INPC.
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
School of Physics and Nuclear Energy Engineering
Resonances in the 12C(α,γ)16O reaction
Labor of Ion Beam Physics, ETHZ
Prototype production and test
Direct measurement of 4He(12C,16O)g reaction at KUTL*
of secondary light ion beams
Direct measurement of 12C + 4He fusion cross section at Ecm=1
Nucleosynthesis 12 C(
Ionization detectors ∆
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
1. Introduction Secondary Heavy charged particle (fragment) production
PHL424: Rutherford scattering discovery of nucleus
Maria Theodora Rosary, 相良建至, 寺西高, 藤田訓裕,
MEBT1&2 design study for C-ADS
Elastic alpha scattering experiments
Physics Design on Injector I
The Nanosecond bunching system at KIGAM Tandem Accelerator
Direct Measurement of the 8Li + d reactions of astrophysical interest
Presentation transcript:

Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T. Mitsuzumi, J.Y. Moon, M.T. Rosary and H. Yamaguchi Department of Physics, Kyushu University, Japan Kyushu University Tandem Laboratory (KUTL)

Evolution of Stars 12 C/ 16 O abundance is determined → affects all of the posterior processes 2 H-burning 4p → 4 He via p-p chain & CNO cycle He-burning 3 4 He → 12 C 4 He+ 12 C → 16 O+  C-burning O-burning Si-burning

3 Introduction 12 C/ 16 O ratio after helium burning process –evolution of heavy stars – supernova or white dwarf? –abundance of element of universe Cross Section of 4 He( 12 C, 16 O)  –very small (~10 -8 nb) – coulomb barrier –varies drastically around stellar energy(0.3MeV) Extrapolation with experimental data E cm (MeV)  (nbarn) x our experiment ( 10% accuracy) extrapolation stellar energy E1 E2

4 16 O measurement ① 4 He beam +  measurement ② 16 N decay measurement ③ direct 16 O measurement with 12 C beam and 4 He target –high efficiency (~ 40%: charge fraction) –total S-factor can be obtained necessary components for E cm =0.7MeV experiment –background separation system: N BG /N 12 C ratio of –thick gas target : ~25 Torr x 3 cm –high intensity beam: ~ 10 p  A Y( 16 O) ~ 5 counts/day → 1 month experiment for 10% error Cross section (S=const.) 10 -5

5 Experimental Setup Layout of Kyushu University Tandem Laboratory (KUTL) Detector (Si-SSD) Sputter ion source 12 C beam Tandem Accelerator Final focal plane (mass separation) Blow in windowless 4 He gas target Long-time chopper chopper buncher 16 O 12 C Recoil Mass Separator (RMS) E cm = 2.4~0.7 MeV E( 12 C)=9.6~2.8 MeV E( 16 O)=7.2~2.1 MeV Tandem RMS

6 Windowless Gas Target RMS TMP3 TMP4 MBP2 TMP2 TMP5 MBP1 beam TMP1 DP 1500 l/s 3000 l/s 330 l/s 520 l/s 350 l/s Differential pumping system (side view) 24 Torr SSD: beam monitor 4.5cm Blow-In Gas Target (BIGT) –windowless & high confinement capability beam

7 BG Reduction and 16 O Detection v dispersion m dispersion

8 E cm =1.5 MeV experiment beam: 12 C 1+, frequency: 3.620MHz –energy: 6.0MeV, intensity: 60pnA target: 4 He gas 15.0 Torr x 3.98 cm observable: 16 O 3+, 4.5 ± 0.3 MeV –abundance = 40.9 ± 2.1 % = efficiency 95 hours data 16 O 208 counts

Charge State Distribution of 16 O Charge state after gas target – 16 O has different charge state Our target is very thick Equilibrium charge distribution was measured Comparison with theoretical calculation

10 Cross Section and S-factor future plan D. Schurmann et al. Eur. Phys. J. A 26, (2005) Our data (2009, 2010), 2010 stellar energy

Development of Ionization Chamber BG reduction by is necessary for E cm =0.7MeV measurement Particle Identification by E-  E information → Ionization Chamber Gas: PR-Gas, 10~30 Torr Effective area: 40 H x40 W x50 t mm 2 Entrance Window: PET foil, 0.5  m,  45mm Voltage: –Cathode: GND, Grid: 100V, Anode: 150V Timing resolution of1ns is necessary → install Si-SSD at the end  45mm cathode frish grid anode SSD PET foil 50mm 40mm 50mm particle

Performance test by 12 C+  Test experiment by E cm =1.5MeV setting –6.0MeV, 12 C beam: ~100nA –Pilot 16 O - spontaneity generating from tandem acc. – 16 O(4.5MeV) and 12 C(3~6MeV) was separated by the ratio of (99.9%) –Energy resolution of Ionization Chamber was  E/E=9%(FWHM) projection 12 C 16 O Total E [MeV]  E [MeV]

Test Experiment of E cm =1.2MeV Update of Tandem acc. ~Accelerate Decelerate mode –successfully incremented for beam intensity Beam: 4.8MeV(1.2MV), 12 C 2+ Observable: 3.6MeV, 16 O 3+ 5 hours data

14 Summary

15 BACKUP

16 Charge State Fraction of 16 O Our data W. Liu et al. / Nucl. Instr. and Meth. A 496 (2003) 198–214

pass only reaction products ( 16 O) which are spread in time. f 2 =3×f 1 V 2 =V 1 /9 f 1 =6.1MHz V 1 =±24.7kV V 3 =23.7kV reject BG pass reaction products + Flat-bottom voltage RF-Deflector (Long Time Chopper) BG( 12 C) 16 O events

18 Trajectory Analysis 12 C backgrounds were rejected by slit control based on trajectory analysis 16 O MeV (E cm =1.5MeV) 12 C MeV 12 C MeV slits target EDD1D2 final focal plane (detector) v dispersion

19 E cm =2.4MeV experiment beam: 12 C 2+, frequency: 6.063MHz –energy: 9.6MeV, intensity: ~35pnA target: 4 He gas ~ 23.9 Torr x 3.98 cm observable: 16 O ± 0.3 MeV –abundance = 36.9 ± 2.1 % = efficiency 29hours data 941 counts 16 O

Development of Ionization Chamber BG reduction by is necessary for E cm =0.7MeV measurement Additional electric deflector? Or Wien-Filter? → difficult due to space boundary Upgrade detector  E information by Ionization Chamber Simulation plot of E-  E Ar Gas: 20Torrx5cm 16 O (4.5MeV) 12 C (1~6MeV) Total E [MeV]  E [MeV]

Resolution of Ionization Chamber 16 O beam Ionization Chamber θ 12 C, 16 O 7μg/cm 2 C-foil Detector setting –PR-gas: 20 Torr –Cathode: -150V, Grid: -50V Measurement of 16 O+ 12 C elastic scattering –Beam: 16 O 2+, 9.6MeV –Target: 12 C(7  g/cm 2 ) 12 C: 5.91MeV 16 O: 4.75MeV –Clearly separated for 16 O(4.75MeV) and 12 C(4.7MeV) –Energy Resolution:  E/E=6%(FWHM) Total E [ch]  E [ch] 45.0° 37.5° 12 C: 4.70MeV

Normal operation of tandem accelerator. Accel-decel operation of tandem accelerator. At low acceleration voltage, focusing becomes weak, and beam transmission decreases. By alternative focus-defocus, Focusing becomes strong, and Beam transmission increases.

By the accel-decel operation, ・ 10 times higher beam transmission is obtained by strong focusing. ・ 17.5 times more intense beam can be injected, due to higher electric power necessary for accel-decel operation. By a large aperture (12 f ) gas stripper, spread in beam energy and angle is decreased, and beam transport to the target is ~3 times increased. Totally, beam intensity is times increased. normal operation accel-decel operation Al shorting bars for accel-decel operation