Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,

Slides:



Advertisements
Similar presentations
www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
Advertisements

Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Photons muons neutrons Tuning the static spin-stripe phase and superconductivity in La 2-x Ba x CuO 4 (x = 1/8) by hydrostatic pressure Zurab Guguchia.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Crystal Structural Behavior of CoCu₂O₃ at High Temperatures April Jeffries*, Ravhi Kumar, and Andrew Cornelius *Department of Physics, State University.
Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Electronic structure of La2-xSrxCuO4 calculated by the
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Magnetocapacitive effect in SDW system (TMTSF) 2 AsF 6 D. Starešinić, D. Dominko, K. Biljaković Institute of Physics, Zagreb, Croatia P. Lunkenheimer,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
The attraction of  + to O 2- : using muons to study oxides Steve Blundell Clarendon Laboratory, Dept. Physics, University Of Oxford, UK.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
The Hall Effects Richard Beck 141A Hall Effect Discovery The physics behind it Applications Personal experiments 2Richard Beck - Physics 141A, 2013.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
T.Vuletic, T.Ivek, B.Korin-Hamzic, S.Tomic B.Gorshunov, M.Dressel
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Peter Abbamonte Brookhaven National Laboratory / SUNY Stony Brook Collaborators: Andrivo Rusydi, Brookhaven and U. Groningen Girsh Blumberg, Bell Laboratories.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
The Electronic Structure of the Ti4O7 Magneli Phase
D :06–4:18 PM Physikon Research  Notre Dame  Arizona State  NJIT Isotope Effect in High-T C Superconductors Dale R. Harshman Physikon Research.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
Emergent Nematic State in Iron-based Superconductors
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Magnon Another Carrier of Thermal Conductivity
Superconductivity and magnetism in iron-based superconductor
Phase diagram of q1D cuprates Sr 14-x Ca x Cu 24 O 41 Tomislav Vuletić Zagreb, Naslov.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
String excitations in quantum antiferromagnets and photoelectron spectroscopy E. Manousakis Physics Department, Florida State University and Physics Department,
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Charge density wave transition probed by interferometric dilatometry
Special Romp session, LT25
Superconductivity in Bismuth Oxide Compounds
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Themoelectric properties of Pb and Sr doped Ca3Co4O9
Presentation transcript:

Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics, Faculty of Science, University of Zagreb, Croatia 2.Institute of Physics, Zagreb, Croatia 3.1. Physikalisches Institut, Universität Stuttgart, Germany 4.Department of Physics, Aoyama-Gakuin University, Kanagawa, Japan

outline introduction to Sr 14−x Ca x Cu 24 O 41  structure → anisotropy  distribution of self-doped holes results (0 ≤ x ≤ 11.5)  electrical resistivity vs T  Hall coefficient vs T discussion  estimation of effective number of carriers n eff  relation to high-T c cuprates

structure of Sr 14−x Ca x Cu 24 O 41 isoelectronic substitution of Sr by Ca → change in properties b=12.9 Å a=11.4 Å A 14 Cu 2 O 3 ladders CuO 2 chains cCcC chains: ladders: c C =2.75 Å c L =3.9 Å 10·c C ≈7·c L ≈27.5 Å cLcL ladders and chains structures are incommensurable → intrinsic source of disorder CuO 2 plane high-T c 2D cuprates quasi-1D behaviour: anisotropy of conductivity:  c /  a  10,  c /  b  10 3 – 10 4 [T. Vuletić, et al., Phys. Rep. (2006)] a c

Sr 14−x Ca x Cu 24 O 41 properties superconductivity occurs for x ≥ 10 under pressure (p = 3-5 GPa) for T ≤ 12 K [Uehara et al., JPSJ (1996)] [Nagata et al., PRL (1998)] system is intrinsically hole doped: average Cu valence = → 6 self-doped holes per f.u. Ca substitution → holes are transferred from the chains to the ladders [Osafune et al., PRL (1997)] [Mizuno et al., JPSJ (1997)] [Motoyama et al., PRB (1997)] [Kato et al., Phys. C (1996)] precise amount of hole transfer is still under disscusion: experiments give contradictory results

Motivation for Hall effect measurements number of holes in ladders n: ◊ NEXAFS [Nücker et al., PRB (2000)] Δ NMR [Piskunov et al., PRB (2005)] □ optical [Osafune et al., PRL (1998)] XAS [Rusydi et al., PRB (2007)] Δ why Hall effect:  long missing basic experiment  holes in chains are localized [T. Vuletić, et al., Phys. Rep. (2006)]  in La 2-x Sr x CuO 4 : n = V/eR H = x, for small x [Ono et al., PRB (2007)]

resistivity vs temperature measured in two geometries  j||a and j||c x ≤ 9:  ρ ~ exp(∆ / T) x = 11.5 (T>80 K) :  dρ a / dT < 0  dρ c / dT > 0 change in slope:  transition to CDW [Vuletić et al. PRL (2003)]

Hall coefficient vs temperature geometry:  full symbols: j||a, B||b  empty symbols: j||c, B||b  no difference in R H dashed lines:  scaled ρ a  x ≤ 9: R H ~ exp(∆ / T) ∆ ~ 1000 K (x = 0) to ∆ ~ 100 K (x = 9) solid black line:  R H = V/4ne calculated assuming n=1 hole/f.u.

effective number of carriers effective number of carriers (●): n eff = V/(4eR H ) number of holes in ladders n: ◊ NEXAFS [Nücker et al., PRB (2000)] Δ NMR [Piskunov et al., PRB (2005)] □ optical [Osafune et al., PRL (1998)] XAS [Rusydi et al., PRB (2007)] also n eff from R H at 1GPa ( ○ ) [Nakanishi et al., JPSJ (1998)] Δ our results in good agreement with NMR and NEXAFS minor change in number of carriers is responsible for pronounced change in resistivity with x

Sr 2.5 Ca 11.5 Cu 24 O 41  dρ c / dT > 0  dρ a / dT < 0  dR H (T) / dT < 0  n eff = 1.33 → n eff (per Cu) = 0.09 comparison with La 1.92 Sr 0.08 CuO 4 : n (per Cu) = 0.08 [Ando et al.,PRL 92 (2004)] [Ando et al.,PRL 93 (2004)] La 1.92 Sr 0.08 CuO 4  dρ ab / dT > 0  dR H (T) / dT < 0 ~ T 1 ~ T -1

cot(Θ H ) in Sr 2.5 Ca 11.5 Cu 24 O 41 cot(Θ H ) ~ T 2  common for HTC  explanation of that behavior still under debate Sr 2.5 Ca 11.5 Cu 24 O 41 T > 140 K  cot(Θ H ) ~ T 2  that behavior is not changed by the increased anisotropy cot(Θ H )=ρ ab /R H B cot(Θ H )=ρ c /R H B [Ando et al.,PRL 92 (2004)]

Conclusion Hall coefficient R H :  positive, hole-like, temperature dependent  x < 11.5, R H ~ exp(∆ / T) x = 11.5  ρ c ~ T 1 ;ρ a ~ R H ~ T -1  cot(Θ H ) ~ T 2 → common for HTC → independent of anisotropy of ladder plane effective number of carriers n eff ~ 1/R H  comparison with number of holes in ladders n  good agreement with NEXAFS and NMR results  minor change in number of carriers → responsible for pronounced change in resistivity with x

Hall effect in Sr 14−x Ca x Cu 24 O 41 two geometries:  j||a, B||b → all samples  j||c, B||b → x = 0 and 11.5 particular care for temperature stabilization three pairs of Hall contacts  better statistics  self-compensation of magnetoresistance

Sr 14−x Ca x Cu 24 O 41 and Bechgaard- Fabre salts [Korin-Hamzić et al.,PRB 67 (2003)] [Moser et al.,PRL 84 (2000)]

R H and ρ vs temperature R H and ρ vs T for x = 0 R H (T) ~ ρ(T)  no marked changes in R H at T CDW T CDW values in agreement with [Vuletić et al. PRL (2003)]

Sr 14−x Ca x Cu 24 O 41 superconductivity occurs for x ≥ 10 under pressure (p = 3-8 GPa) for T < 12 K [Nagata et al., J. Phys. Soc. Jpn. (1997)] occurs by carrier doping in low- dimensional antiferromagnetic spin structure [T. Vuletić, et al., Phys. Rep. (2006)]

distribution of doped holes Madelung potential calculations: [Mizuno et al., J. Phys. Soc. Jpn. (1997)]  x=0: n L =0  x>0: n L >0 optical conductivity: [Osafune et al., Phys. Rev. Lett. (1998)]  x=0: n L =1  x=11: n L =2.8 NEXAFS: [Nücker et al., Phys. Rev. B. (2000)]  x=0: n L =0.8  x=12: n L =1.1 NMR: [Piskunov et al., Phys. Rev. B. (2005)]  n L (x=12)-n L (x=0)=0.42  applied pressure: n L ↑ XAS [Rusydi et al., Phys. Rev. B. (2007)]  x=0: n L =2.8  x=11: n L =4.4