Wednesday, Feb. 6, 2008 PHYS 1441-002, Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #7 Wednesday, Feb. 6, 2008 Dr. Jaehoon Yu Motion in.

Slides:



Advertisements
Similar presentations
Monday, Aug. 30, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #3 Monday, Aug. 30, 2004 Dr. Jaehoon Yu 1.One Dimensional.
Advertisements

Vectors and Two Dimensional Motion
Chapter 3 Motion in Two Dimensions
Ch. 3, Kinematics in 2 Dimensions; Vectors. Vectors General discussion. Vector  A quantity with magnitude & direction. Scalar  A quantity with magnitude.
Tuesday, June 16, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #5 Tuesday, June 16, 2015 Dr. Jaehoon Yu Trigonometry.
Wednesday, Sept. 1, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #4 Wednesday, Sept. 1, 2004 Venkat Kaushik 1.One Dimensional.
Thursday, June 11, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #4 Thursday, June 11, 2015 Dr. Jaehoon Yu Chapter 2:
Thursday, June 5, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #4 Thursday, June 5, 2014 Dr. Jaehoon Yu Chapter 2: One.
Chapter 3, Vectors. Outline Two Dimensional Vectors –Magnitude –Direction Vector Operations –Equality of vectors –Vector addition –Scalar product of two.
Vector Quantities We will concern ourselves with two measurable quantities: Scalar quantities: physical quantities expressed in terms of a magnitude only.
Vector Quantities Vectors have ▫magnitude ▫direction Physical vector quantities ▫displacement ▫velocity ▫acceleration ▫force.
Coordinate Systems 3.2Vector and Scalar quantities 3.3Some Properties of Vectors 3.4Components of vectors and Unit vectors.
PHYS 1443 – Section 001 Lecture #3 Wednesday, January 26, 2011 Dr. Jaehoon Yu One Dimensional Motion Displacement Average Speed and Velocity Instantaneous.
Wednesday, Sept. 3, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #3 Wednesday, Sept. 3, 2003 Dr. Jaehoon Yu 1.One Dimensional.
PHYS 1441 – Section 002 Lecture #7 Wednesday, Feb. 6, 2013 Dr. Jaehoon Yu What is the Projectile Motion? How do we solve projectile motion problems? Maximum.
Wednesday, Jan. 30, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Wednesday, Jan. 30, 2008 Dr. Jaehoon Yu Acceleration.
Thursday, Sept. 4, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #4 Thursday, Sept. 4, 2014 Dr. Jaehoon Yu Today’s homework.
Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #5 Wednesday, Sept. 8, 2004 Dr. Jaehoon Yu 1.One Dimensional.
Vector Addition – Computational Method Example 1 Slide 3.
Wednesday, Sept. 12, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #5 Wednesday, Sept. 12, 2007 Dr. Jaehoon Yu Coordinate.
Thursday, May 31, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #3 Thursday, May 31, 2007 Dr. Jaehoon Yu One Dimensional.
PHYS 1441 – Section 002 Lecture #8 Monday, Feb. 11, 2013 Dr. Jaehoon Yu Maximum Range and Height What is the Force? Newton’s Second Law Free Body Diagram.
Monday, Feb. 4, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #6 Monday, Feb. 4, 2008 Dr. Jaehoon Yu Examples for 1-Dim.
Wednesday, June 10, 2015 PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #2 Tuesday, June 9, 2015 Dr. Jaehoon Yu Chapter 2:
© 2010 Pearson Education, Inc. Lecture Outline Chapter 3 College Physics, 7 th Edition Wilson / Buffa / Lou.
Tuesday, Sept. 9, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #5 Tuesday, Sept. 9, 2014 Dr. Jaehoon Yu Motion in two.
Tuesday, June 10, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #5 Tuesday, June 10, 2014 Dr. Jaehoon Yu Trigonometry.
Chapter 3 Vectors. Vector quantities  Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this.
Monday, Sept. 13, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Motion in two dimension Motion under constant acceleration Projectile motion Heights.
Monday, February 2, 2004PHYS , Spring 2004 Dr. Andrew Brandt 1 PHYS 1443 – Section 501 Lecture #4 Monday, Feb. 2, 2004 Dr. Andrew Brandt Motion.
Monday, Jan. 28, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #4 Monday, Jan. 28, 2008 Dr. Jaehoon Yu Some Fundamentals.
Wednesday, June 9, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #3 Wednesday, June 9, 2004 Dr. Jaehoon Yu Today’s homework.
Wednesday, Sept. 15, 2010 PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #4 Wednesday, Sept. 15, 2010 Dr. Jaehoon Yu One Dimensional.
Thursday, May 29, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Thursday, May 29, 2008 Dr. Jaehoon Yu One Dimensional.
Monday, Sept. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #4 Monday, Sept. 10, 2007 Dr. Jaehoon Yu Acceleration.
Kinematics & Dynamics in 2 & 3 Dimensions; Vectors First, a review of some Math Topics in Ch. 1. Then, some Physics Topics in Ch. 4!
Chapter 3: Vectors & Two-Dimensional Motion
Monday, Feb. 9, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #6 Monday, Feb. 9, 2004 Dr. Jaehoon Yu Chapter three: Motion.
Wednesday, June 8, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #3 Wednesday, June 8, 2011 Dr. Jaehoon Yu One Dimensional.
Monday, Sept. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Monday, Sept. 20, 2010 Dr. Jaehoon Yu One Dimensional.
Wednesday, Sept. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #7 Wednesday, Sept. 19, 2007 Dr. Jaehoon Yu Motion.
Wednesday, Aug. 27, 2003 PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #2 Wednesday, Aug. 27, 2003 Dr. Jaehoon Yu 1.Dimensional.
Wednesday, Feb. 11, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Wednesday, Feb. 11, 2009 Dr. Jaehoon Yu Coordinate.
Wednesday, Feb. 4, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #5 Wednesday, Feb. 4, 2004 Dr. Jaehoon Yu Chapter two:
Monday January 26, 2004PHYS , Spring 2004 Dr. Andrew Brandt 1 PHYS 1443 – Section 501 Lecture #2 Monday January 26, 2004 Dr. Andrew Brandt Chapter.
1 Vector Decomposition y x 0 y x 0 y x 0. 2 Unit vector in 3D Cartesian coordinates.
Spring 2002 Lecture #3 Dr. Jaehoon Yu 1.Coordinate Systems 2.Vector Properties and Operations 3.2-dim Displacement, Velocity, & Acceleration 4.2-dim.
Wednesday, June 8, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Wednesday, June 8, 2016 Dr. Jaehoon Yu Chapter 21.
PHYS 1441 – Section 002 Lecture #10
PHYS 1441 – Section 002 Lecture #6
PHYS 1441 – Section 001 Lecture #5
PHYS 1441 – Section 002 Lecture #4
PHYS 1443 – Section 002 Lecture #6
PHYS 1443 – Section 001 Lecture #4
PHYS 1441 – Section 002 Lecture #8
PHYS 1441 – Section 001 Lecture #6
PHYS 1441 – Section 001 Lecture #2
PHYS 1443 – Section 003 Lecture #4
Ch. 3: Kinematics in 2 or 3 Dimensions; Vectors
Kinematics & Dynamics in 2 & 3 Dimensions; Vectors
Distance vs Displacement
PHYS 1441 – Section 002 Lecture #4
PHYS 1443 – Section 003 Lecture #2
PHYS 1443 – Section 001 Lecture #4
PHYS 1441 – Section 002 Lecture #8
PHYS 1443 – Section 001 Lecture #5
PHYS 1443 – Section 002 Lecture #5
PHYS 1441 – Section 002 Lecture #6
PHYS 1443 – Section 002 Lecture #5
PHYS 1443 – Section 002 Lecture #5
Presentation transcript:

Wednesday, Feb. 6, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #7 Wednesday, Feb. 6, 2008 Dr. Jaehoon Yu Motion in Two Dimension –Motion under constant acceleration –Vector recap –Projectile Motion –Maximum ranges and heights

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 2 Announcements 1 st term exam on Wednesday, Feb. 20 –Time: 1 – 2:20pm –Place: SH103 –Covers: Appendices, CH 1 – what we learn till next Wednesday, Feb. 13 –Class on Monday, Feb. 18: Jason will be here to go over the any problems you would like to review Colloquium –Today at 4pm in SH101, following the refreshment at 3:30pm in SH108 –Please be sure to sign in the sign-in sheet

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 3

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 4 Kinematic Quantities in 1D and 2D Quantities1 Dimension2 Dimension Displacement Average Velocity Inst. Velocity Average Acc. Inst. Acc. What is the difference between 1D and 2D quantities?

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 5 Kinematic Equations

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 6 This is a motion that could be viewed as two motions combined into one. A Motion in 2 Dimension

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 7 Motion in horizontal direction (x)

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 8 Motion in vertical direction (y)

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 9 Imagine you add the two 1 dimensional motions on the left. It would make up a one 2 dimensional motion on the right. A Motion in 2 Dimension

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 10 x-component Kinematic Equations in 2-Dim y-component

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 11 Coordinate Systems They make it easy and consistent to express locations or positions Two commonly used systems, depending on convenience, are –Cartesian (Rectangular) Coordinate System Coordinates are expressed in (x,y) –Polar Coordinate System Coordinates are expressed in distance from the origin ® and the angle measured from the x-axis,  (r  ) Vectors become a lot easier to express and compute O (0,0) (x 1,y 1 ) r1r1  How are Cartesian and Polar coordinates related? y1y1 x1x1 +x +y = (r 1   )

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 12 Example Cartesian Coordinate of a point in the xy plane are (x,y)= (-3.50,-2.50)m. Find the equivalent polar coordinates of this point. y x (-3.50,-2.50)m r  ss

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 13 Properties of Vectors Two vectors are the same if their and the are the same, no matter where they are on a coordinate system!! x y A B E D C F Which ones are the same vectors? A=B=E=D Why aren’t the others? C: C: The same magnitude but opposite direction: C=-A: C=-A: A negative vector F: F: The same direction but different magnitude sizes directions

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 14 Vector Operations Addition: –Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other (head-to-tail) –Parallelogram method: Connect the tails of the two vectors and extend –Addition is commutative: Changing order of operation does not affect the results A+B=B+A A+B=B+A, A+B+C+D+E=E+C+A+B+D A B A B = A B A+B Subtraction: –The same as adding a negative A vector: A - B = A + B (- B )A -B Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!! Multiplication by a scalar is increasing the magnitude A, BA B =2 AA B=2A A+B A+B A-B OR

Wednesday, Feb. 6, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 15 Example for Vector Addition A car travels 20.0km due north followed by 35.0km in a direction 60.0 o west of north. Find the magnitude and direction of resultant displacement. N E    r 20A B Find other ways to solve this problem… Bcos   Bsin  